Probability essentials
Author(s)
Bibliographic Information
Probability essentials
(Universitext)
Springer, 2004
2nd ed., corr. 2nd printing
Related Bibliography 1 items
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [249]-250) and index
Description and Table of Contents
Description
This introduction can be used, at the beginning graduate level, for a one-semester course on probability theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as finance theory, electrical engineering, and operations research. The text covers the essentials in a directed and lean way with 28 short chapters, and assumes only an undergraduate background in mathematics. Readers are taken right up to a knowledge of the basics of Martingale Theory, and the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference.
Table of Contents
1. Introduction 2. Axioms of Probability 3. Conditional Probability and Independence 4. Probabilities on a Countable Space 5. Random Variables on a Countable Space 6. Construction of a Probability Measure 7. Construction of a Probability Measure on R 8. Random Variables 9. Integration with Respect to a Probability Measure 10. Independent Random Variables 11. Probability Distributions on R 12. Probability Distributions on Rn 13. Characteristic Functions 14. Properties of Characteristic Functions 15. Sums of Independent Random Variables 16. Gaussian Random Variables (The Normal and the Multivariate Normal Distributions) 17. Convergence of Random Variables 18. Weak Convergence 19. Weak Convergence and Characteristic Functions 20. The Laws of Large Numbers 21. The Central Limit Theorem 22. L2 and Hilbert Spaces 23. Conditional Expectation 24. Martingales 25. Supermartingales and Submartingales 26. Martingale Inequalities 27. Martingales Convergence Theorems 28. The Radon-Nikodym Theorem
by "Nielsen BookData"