Complex-valued neural networks with multi-valued neurons

著者

    • Aizenberg, Igor

書誌事項

Complex-valued neural networks with multi-valued neurons

Igor Aizenberg

(Studies in computational intelligence, v. 353)

Springer, c2011

大学図書館所蔵 件 / 4

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [253]-259) and index

内容説明・目次

内容説明

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.

目次

Why We Need Complex-Valued Neural Networks?.- The Multi-Valued Neuron.- MVN Learning.- Multilayer Feedforward Neural Network based on Multi-Valued Neurons (MLMVN).- Multi-Valued Neuron with a Periodic Activation Function.- Applications of MVN and MLMVN.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB06399843
  • ISBN
    • 9783642203527
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    xv, 262 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ