Combinatorial games : tic-tac-toe theory
著者
書誌事項
Combinatorial games : tic-tac-toe theory
(Encyclopedia of mathematics and its applications / edited by G.-C. Rota, 114)
Cambridge University Press, 2011, c2008
- : pbk
- タイトル別名
-
Combinatorial games : tic tac toe theory
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 732-734)
内容説明・目次
内容説明
Traditional game theory has been successful at developing strategy in games of incomplete information: when one player knows something that the other does not. But it has little to say about games of complete information, for example, tic-tac-toe, solitaire and hex. The main challenge of combinatorial game theory is to handle combinatorial chaos, where brute force study is impractical. In this comprehensive volume, Jozsef Beck shows readers how to escape from the combinatorial chaos via the fake probabilistic method, a game-theoretic adaptation of the probabilistic method in combinatorics. Using this, the author is able to determine the exact results about infinite classes of many games, leading to the discovery of some striking new duality principles. Available for the first time in paperback, it includes a new appendix to address the results that have appeared since the book's original publication.
目次
- Preface
- A summary of the book in a nutshell
- Part I. Weak Win and Strong Draw: 1. Win vs. weak win
- 2. The main result: exact solutions for infinite classes of games
- Part II. Basic Potential Technique - Game-Theoretic First and Second Moments: 3. Simple applications
- 4. Games and randomness
- Part III. Advanced Weak Win - Game-Theoretic Higher Moment: 5. Self-improving potentials
- 6. What is the Biased Meta-Conjecture, and why is it so difficult?
- Part IV. Advanced Strong Draw - Game-Theoretic Independence: 7. BigGame-SmallGame decomposition
- 8. Advanced decomposition
- 9. Game-theoretic lattice-numbers
- 10. Conclusion
- Appendix A. Ramsey numbers
- Appendix B. Hales-Jewett theorem: Shelah's proof
- Appendix C. A formal treatment of positional games
- Appendix D. An informal introduction to game theory
- Appendix E. New results
- Complete list of the open problems
- What kinds of games? A dictionary
- Dictionary of the phrases and concepts
- References.
「Nielsen BookData」 より