Probability in Banach spaces : isoperimetry and processes
著者
書誌事項
Probability in Banach spaces : isoperimetry and processes
(Classics in mathematics)
Springer, c2011
- タイトル別名
-
Ergebnisse der Mathematik und ihrer Grenzgebiete
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Reprint of the 1991 Edition."
"Originally published as Vol. 23 of the series Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge"--T.p. verso
Includes bibliographical references (p. [461]-477) and index
内容説明・目次
内容説明
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.
目次
Notation.- 0. Isoperimetric Background and Generalities.- 1. Isoperimetric Inequalities and the Concentration of Measure Phenomenon.- 2. Generalities on Banach Space Valued Random Variables and Random Processes.- I. Banach Space Valued Random Variables and Their Strong Limiting Properties.- 3. Gaussian Random Variables.- 4. Rademacher Averages.- 5. Stable Random Variables.- 6 Sums of Independent Random Variables.- 7. The Strong Law of Large Numbers.- 8. The Law of the Iterated Logarithm.- II. Tightness of Vector Valued Random Variables and Regularity of Random Processes.- 9. Type and Cotype of Banach Spaces.- 10. The Central Limit Theorem.- 11. Regularity of Random Processes.- 12. Regularity of Gaussian and Stable Processes.- 13. Stationary Processes and Random Fourier Series.- 14. Empirical Process Methods in Probability in Banach Spaces.- 15. Applications to Banach Space Theory.- References.
「Nielsen BookData」 より