Recent advances in functional data analysis and related topics
著者
書誌事項
Recent advances in functional data analysis and related topics
(Contributions to statistics)
Physica-Verlag, c2011
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
New technologies allow us to handle increasingly large datasets, while monitoring devices are becoming ever more sophisticated. This high-tech progress produces statistical units sampled over finer and finer grids. As the measurement points become closer, the data can be considered as observations varying over a continuum. This intrinsic continuous data (called functional data) can be found in various fields of science, including biomechanics, chemometrics, econometrics, environmetrics, geophysics, medicine, etc. The failure of standard multivariate statistics to analyze such functional data has led the statistical community to develop appropriate statistical methodologies, called Functional Data Analysis (FDA). Today, FDA is certainly one of the most motivating and popular statistical topics due to its impact on crucial societal issues (health, environment, etc). This is why the FDA statistical community is rapidly growing, as are the statistical developments . Therefore, it is necessary to organize regular meetings in order to provide a state-of-art review of the recent advances in this fascinating area. This book collects selected and extended papers presented at the second International Workshop of Functional and Operatorial Statistics (Santander, Spain, 16-18 June, 2011), in which many outstanding experts on FDA will present the most relevant advances in this pioneering statistical area. Undoubtedly, these proceedings will be an essential resource for academic researchers, master students, engineers, and practitioners not only in statistics but also in numerous related fields of application.
目次
Penalized Spline Approaches for Functional Principal Component Logit.- Functional Prediction for the Residual Demand in Electricity Spot .- Variable Selection in Semi-Functional RegressionModels.- Power Analysis for Functional Change Point Detection.- Robust Nonparametric Estimation for Functional Spatial Regression.- Sequential Stability Procedures for Functional Data Setups.- On the Effect of Noisy Observations of the Regressor in a Functional Linear Model.- Testing the Equality of Covariance Operators.- Modeling and Forecasting Monotone Curves by FDA.- Wavelet-Based Minimum Contrast Estimation of Linear Gaussian Random Fields.- Dimensionality Reduction for Samples of Bivariate Density Level Sets: an Application to Electoral Results.- Structural Tests in Regression on Functional Variable.- A Fast Functional Locally Modeled Conditional Density and Mode for Functional Time-Series.- Generalized Additive Models for Functional Data.- Recent Advances on Functional Additive Regression.- Thresholding in Nonparametric Functional Regression with Scalar Response.- Estimation of a Functional Single Index Model.- Density Estimation for Spatial-Temporal Data.- Functional Quantiles.- Extremality for Functional Data.- Functional Kernel Estimators of Conditional Extreme Quantiles.- A Nonparametric Functional Method for Signature Recognition.- Longitudinal Functional Principal Component Analysis.- Estimation and Testing for Geostatistical Functional Data.- Structured Penalties for Generalized Functional Linear Models (GFLM).- Consistency of the Mean and the Principal Components of Spatially Distributed Functional Data.- Kernel Density Gradient Estimate.- A Backward Generalization of PCA for Exploration and Feature Extraction of Manifold-Valued Shapes.- Multiple Functional Regression with both Discrete and Continuous Covariates.- Factor Modeling for High Dimensional Time Series.- Depth for Sparse Functional Data.- Sparse Functional Linear Regression with Applications to Personalized Medicine.- Estimation of Functional Coefficients in Partial Differential Equations.- Functional Varying Coefficient Models.- Applications of Functional Data Analysis to Material Science.- On the Properties of Functional Dept.- Second-Order Inference for Functional Data with Application to DNA Minicircles.- Nonparametric Functional Time Series Prediction.- Wavelets Smoothing for Multidimensional Curves.- Nonparametric Conditional Density Estimation for Functional Data. Econometric Applications.
「Nielsen BookData」 より