Chemical elements in plants and soil : parameters controlling essentiality
著者
書誌事項
Chemical elements in plants and soil : parameters controlling essentiality
(Tasks for vegetation science, 45)
Springer, c2010
- : e-ISBN
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Formerly CIP Uk
Includes bibliographical references and index
内容説明・目次
内容説明
Earlier works on plant essential elements have revealed a series of complicated, counter-intuitive relationships among various chemical elements in different plant species, due to both unlike usage of certain elements in plants and to different carriers effecting resorption and transport.
In an attempt to provide a more coherent theory behind plant mineral nutrition, this groundbreaking book adopts a very different approach from the existing literature, presenting an explanation of the essentiality of chemical elements in biological systems and the application of stoichiometric network analysis (SNA) to the biological system of elements. Starting with data from biochemical environmental analysis, and a discussion of the phenomena involved in metal ion partition and autocatalytic behaviour, conditions and criteria controlling the partition of metals into biomass are investigated. Several rules are derived and investigated in terms of their interaction both in comparisons among contemporary organisms and in terms of evolution. This allows the construction, for example of a map which directly traces the biological feature of essentiality to parameters of coordination chemistry.
The book will have worldwide appeal for researchers interested in fields such as soil/plant interactions, bioinorganic chemistry, plant nutrition, phytomining, bioremediation, biogeochemistry, nutrient cycling, soil chemistry, and cellular physiology.
目次
Introduction.- 1. The biological System of Elements. - 1.1. Principles of Element Distribution in Plants.- 1.1.1. Distribution Patterns of Chemical Elements in Plants.- 1.1.2. Biochemical Essentiality of Elements in the Light of Enzymatic Reactions.- 1.1.3. Soil and Geochemistry: Support and Storage/Buffer System for Biology.- 1.2. Methodology of Inquiries into the Biological System of Elements.- 1.2.1. Correlation Analysis of Element Distribution in multiple Plant Species.- 1.2.2. Fundamentals of the Correlation-Chemical Analysis of Element Abundances.- 1.2.2.1. Stoichiometric Network Analysis.- 1.2.2.2. Biophysical Implication of Gibbss Phase Rule.- 1.2.2.3. Aqueous Coordination Chemistry related to Metal Uptake.- 2. Autocatalytic Processes and the Role of Essential Elements in Plant Growth.- 2.1. Biomass Stability in the Light of Gibbss Phase Rule.- 2.2. Coordination-Chemical Control of Element Uptake.- 2.2.1. Electrochemical parameters of Biologically relevant Ligands.- 2.2.2. A Method to Calculate Metal-Ligand Association Equilibria.- 2.2.3. How does the Electrochemical Ligand Parameter influence real vs. possible Hapticity of some Polydentate Ligand?.- 2.2.4. Translating Complex Stabilities into BCF Data: the k Term of Element Fractionation.- 2.2.5. Binding Stability of Substrates and Products in Catalytic Cycles: How does Ligand Sensitivity influence Reaction Kinetics?.- 2.2.6. The Electrochemical Ligand Parameter, Metal Affinities and Chemical Ecology.- 2.2.7. Implication of Some Theoremes from Stoichiometric Network Analysis (SNA) with respect to Stability and Functions of Biochemical Systems.- 2.2.8. Matter (Flow) Balance and Estimation of Loss Processes (exit order) Within Autocatalytic Biochemical Cycles.- 2.2.9. The Topology of Autocatalytic Feedback Patterns in Living Systems.- 2.2.10. SNA and Metal Transport in Terrestrial Plants.- 2.2.11. Stoichiometry of Terrestrial Plants and its Implications according to SNA.- 2.2.12. A Comprehensive Analysis of Autocatalytic Processes within Some Photosynthetic Plant.- 2.3. Some Remarks on Chemical Ecology.- 2.3.1. Constraints of Essentiality caused by Consumers.- 2.3.2. Trophic Nets.- 2.3.3. Different Kinds of Energy Metabolism and C/N plus C/Metal, Intermetal Ratios.- 2.3.4. Succession and Ecological Stoichiometry in Certain Biotopes.- 3. A Causal Model of Biochemical Essentiality.- 3.1. Influence of Intrinsic Bonding Stability and Ligand Sensitivity on the Biocatalytic Properties of Metal Ions.- 3.2. Complex Stability in Relation to other Bioorganic Parameters.- 3.3. Scope of the Essentiality Model.- 4. The Evolution of Essentiality.- 4.1. Evolution and Biochemical Catalysis.- 4.2. The Three-Function-Rule as a Controlling Factor in the Origins of Essentiality.- 4.3. Biogeochemical Fractionation Processes and essentiality Patterns in Different Taxa under Changing Biogeochemical Boundary Conditions.- References.
「Nielsen BookData」 より