Basic pharmacokinetics and pharmacodynamics : an integrated textbook and computer simulations

書誌事項

Basic pharmacokinetics and pharmacodynamics : an integrated textbook and computer simulations

Sara Rosenbaum

John Wiley & Sons, c2011

大学図書館所蔵 件 / 7

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

With its clear, straightforward presentation, this text enables you to grasp all the fundamental concepts of pharmacokinetics and pharmacodynamics. This will allow you to understand the time course of drug response and dosing regimen design. Clinical models for concentration and response are described and built from the basic concepts presented in earlier chapters. Your understanding of the material will be enhanced by guided computer exercises conducted on a companion website. Simulations will allow you to visualize drug behavior, experiment with different dosing regimens, and observe the influence of patient characteristics and model parameters. This makes the book ideal for self-study. By including clinical models of agonism, indirect drug effects, tolerance, signal transduction, and disease progression, author Sara Rosenbaum has created a work that stands out among introductory-level textbooks in this area.You'll find several features throughout the text to help you better understand and apply key concepts: * Three fictitious drugs are used throughout the text to progressively illustrate the development and application of pharmacokinetic and pharmacodynamic principles * Exercises at the end of each chapter reinforce the concepts and provide the opportunity to perform and solve common dosing problems * Detailed instructions let you create custom Excel worksheets to perform simple pharmacokinetic analyses Because this is an introductory textbook, the material is presented as simply as possible. As a result, you'll find it easy to gain an accurate, working knowledge of all the core principles, apply them to optimize dosing regimens, and evaluate the clinical pharmacokinetic and pharmacodynamic literature.

目次

Preface. 1. Introduction to Pharmacokinetics and Pharmacodynamics. 1.1 Introduction: Drugs and Doses. 1.2 Introduction to Pharmacodynamics. 1.3 Introduction to Pharmacokinetics. 1.4 Dose-Response Relationships. 1.5 Therapeutic Range. 1.6 Summary. 2. Passage of Drugs Through Membranes. 2.1 Introduction. 2.2 Structure and Properties of Membranes. 2.3 Passive Diffusion. 2.4 Carrier-Mediated Processes: Transport Proteins. 3. Drug Administration, Absorption, and Bioavailability. 3.1 Introduction: Local and Systemic Drug Administration. 3.2 Common Routes of Systemic Drug Administration. 3.3 Overview of Oral Absorption. 3.4 Extent of Drug Absorption. 3.5 Determinants of the Bioavailability. 3.6 Factors Controlling the Rate of Drug Absorption. 3.7 Biopharmaceutics Classification System. Problems. References. 4. Drug Distribution. 4.1 Introduction. 4.2 Extent of Drug Distribution. 4.3 Rate of Drug Distribution. 4.4 Distribution of Drugs to the Central Nervous System. Problems. References. 5. Drug Elimination and Clearance. 5.1 Introduction. 5.2 Clearance. 5.3 Renal Clearance. 5.4 Hepatic Clearance. 5.5 Measurement of Clearances. Problems. References. 6. Compartmental Models in Pharmacokinetics. 6.1 Introduction. 6.2 Expressions for Component Parts of the Dose-Plasma. 6.3 Putting Everything Together: Compartments and Models. 6.4 Examples of Complete Compartment Models. 6.5 Use of Compartmental Models to Study Metabolite Pharmacokinetics. 6.6 Selecting and Applying Models. Problems. Recommended Reading. 7. Pharmacokinetics of an Intravenous Bolus Injection in a One-Compartment Model. 7.1 Introduction. 7.2 One-Compartment Model. 7.3 Pharmacokinetic Equations. 7.4 Simulation Exercise. 7.5 Application of the Model. 7.6 Determination of Pharmacokinetic Parameters Experimentally. 7.7 Pharmacokinetic Analysis in Clinical Practice. Problems. Recommended Reading. 8. Pharmacokinetics of an Intravenous Bolus Injection in a Two-Compartment Model. 8.1 Introduction. 8.2 Tissue and Compartment Distribution of a Drug. 8.3 Basic Equation. 8.4 Relationship Between Macro and Micro Rate Constants. 8.5 Primary Pharmacokinetic Parameters. 8.6 Simulation Exercise. 8.7 Determination of the Pharmacokinetic Parameters of the Two-Compartment Model. 8.8 Clinical Application of the Two-Compartment Model. Problems. Recommended Reading. 9. Pharmacokinetics of Extravascular Drug Administration. 9.1 Introduction. 9.2 Model for First-Order Absorption in a One-Compartment Model. 9.3 Bioavailability. 9.4 Simulation Exercise. Problems. Recommended Reading. 10. Introduction to Noncompartmental Analysis. 10.1 Introduction. 10.2 Mean Residence Time. 10.3 Determination of Other Important Pharmacokinetic Parameters. 10.4 Different Routes of Administration. 10.5 Application of Noncompartmental Analysis to Clinical Studies. Problems. 11. Pharmacokinetics of Intravenous Infusion in a One-Compartment Model. 11.1 Introduction. 11.2 Model and Equations. 11.3 Steady-State Plasma Concentration. 11.4 Loading Dose. 11.5 Termination of Infusion. 11.6 Individualization of Dosing Regimens. Problems. 12. Multiple Intravenous Bolus Injections in the One-Compartment Model. 12.1 Introduction. 12.2 Terms and Symbols Used in Multiple-Dosing Equations. 12.3 Monoexponential Decay During a Dosing Interval. 12.4 Basic Pharmacokinetic Equations for Multiple Doses. 12.5 Steady State. 12.6 Basic Formula Revisited. 12.7 Pharmacokinetic-Guided Dosing Regimen Design. 12.8 Simulation Exercise. Problems. References. 13. Multiple Intermittent Infusions. 13.1 Introduction. 13.2 Steady-State Equations for Multiple Intermittent. 13.3 Monoexponential Decay During a Dosing Interval: Dtermination of Peaks, Troughs, and Elimination Half-Life. 13.4 Determination of the Volume of Distribution. 13.5 Individualization of Dosing Regimens. 13.6 Simulation Exercise. Problems. 14. Multiple Oral Doses. 14.1 Introduction. 14.2 Steady-State Equations. 14.3 Equations Used Clinically to Individualize Oral Doses. 14.4 Simulation Exercise. Problems. 15. Nonlinear Pharmacokinetics. 15.1 Linear Pharmacokinetics. 15.2 Nonlinear Processes in Absorption, Distribution, Metabolism, and Elimination. 15.3 Pharmacokinetics of Capacity-Limited Metabolism. 15.4 Phenytoin. Problems. References. 16. Introduction to Pharmacodynamic Models and Integrated Pharmacokinetic-Pharmacodynamic Models. 16.1 Introduction. 16.2 Classic Pharmacodynamic Models Based on Traditional Receptor Theory. 16.3 Empirical Pharmacodynamic Models Used Clinically. 16.4 Integrated PK-PD Models: Emax Models Combined with a PK Model for Intravenous Bolus Infection in a One-Compartment Model. 16.5 Hystersis and the Effect Compartment. Problems. References. 17. Mechanism-Based Integrated Pharmacokinetic-Pharmacodynamic Models. 17.1 Introduction. 17.2 Alternative Models for Drug-Receptor Interaction: Operational Model of Agonism. 17.3 Physiological Turnover Model and Its Characteristics. 17.4 Indirect Effect Models. 17.5 Transduction and Transit Compartment Models. 17.6 Tolerance Models. 17.7 Irreversible Drug Effects. 17.8 Disease Progression Models. Problems. References. Appendix A. Review of Exponents and Logarithms. Appendix B. Rates of Processes. Appendix C. Creation of Excel Worksheets for Pharmacokinetic Analysis. Appendix D. Derivation of Equations for Multiple Intravenous Bolus Injections. Appendix E. Summary of the Properties of the Fictitious Drugs Used in the Text. Appendix F. Computer Simulation Models. Glossary of Abbreviations and Symbols. Index.

「Nielsen BookData」 より

詳細情報

ページトップへ