Handbook of statistical bioinformatics
著者
書誌事項
Handbook of statistical bioinformatics
(Springer handbooks of computational statistics)
Springer, c2011
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
Numerous fascinating breakthroughs in biotechnology have generated large volumes and diverse types of high throughput data that demand the development of efficient and appropriate tools in computational statistics integrated with biological knowledge and computational algorithms. This volume collects contributed chapters from leading researchers to survey the many active research topics and promote the visibility of this research area. This volume is intended to provide an introductory and reference book for students and researchers who are interested in the recent developments of computational statistics in computational biology.
目次
I: Accuracy Assessment of Consensus Sequence from Shotgun Sequencing.- Statistical and Computational Studies on Alternative Splicing.- Using Sequence Information to Predict TF-DNA Binding.- Computational Promoter Prediction in a Vertebrate Genome.- Discovering Influential Variables: A General Computer Intensive Method for Common Genetic Disorders.- STORMSeq: A Method for Ranking Regulatory Sequences by Integrating Experimental Datasets with Diverse Computational Predictions.- Mixture Tree Construction and Its Applications.- II: Experimental Designs and ANOVA for Microarray Data.- MAQC and Cross Platform Analysis of Microarray Data.- A Survey of Classification Techniques for Microarray Analysis.- Statistical Analysis of Single Nucleotide Polymorphism Microarrays in Cancer Studies.- Computational Analysis of ChIP-chip Data.- eQTL Mapping for Functional Classes of Saccharomyces Cerevisiae Genes with Multivariate Sparse Partial Least Squares Regression.- Analysis of Time Course Data.- III: Kernel Methods in Bioinformatics.- Graph Classification Methods in Chemoinformatics.- Hidden Markov Random Field Models for Network-based Analysis of Genomic Data.- Review of Weighted Gene Coexpression Network Analysis.- Liquid Association.- Boolean Networks.- Protein Interaction Networks: Protein Domain Interaction and Protein Function Prediction.- Regulatory Networks.- Inferring Signaling and Gene Regulatory Network from Genetic and Genomic Information.- Computational Drug Target Pathway Discovery: A Bayesian Network Approach.- Cancer Systems Biology.- Comparative Genomics and Molecular Evolution.- Robust Control of Immune Systems under Noises: Stochastic Game Approach.
「Nielsen BookData」 より