Linear algebra and its applications

Author(s)

Bibliographic Information

Linear algebra and its applications

David C. Lay

Addison-Wesley, c2012

4th ed

  • study guide

Available at  / 8 libraries

Search this Book/Journal

Note

Includes index

Author of study guide: Judith McDonald

Description and Table of Contents

Volume

ISBN 9780321385178

Description

Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. David Lay introduces these concepts early in a familiar, concrete Rn setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible. Note: This is the standalone book, if you want the book/access card order the ISBN below. 0321399145 / 9780321399144 Linear Algebra plus MyMathLab Getting Started Kit for Linear Algebra and Its Applications Package consists of: 0321385179 / 9780321385178 Linear Algebra and Its Applications 0321431308 / 9780321431301 MyMathLab/MyStatLab -- Glue-in Access Card 0321654064 / 9780321654069 MyMathLab Inside Star Sticker

Table of Contents

  • 1. Linear Equations in Linear Algebra Introductory Example: Linear Models in Economics and Engineering 1.1 Systems of Linear Equations 1.2 Row Reduction and Echelon Forms 1.3 Vector Equations 1.4 The Matrix Equation Ax = b 1.5 Solution Sets of Linear Systems 1.6 Applications of Linear Systems 1.7 Linear Independence 1.8 Introduction to Linear Transformations 1.9 The Matrix of a Linear Transformation 1.10 Linear Models in Business, Science, and Engineering Supplementary Exercises 2. Matrix Algebra Introductory Example: Computer Models in Aircraft Design 2.1 Matrix Operations 2.2 The Inverse of a Matrix 2.3 Characterizations of Invertible Matrices 2.4 Partitioned Matrices 2.5 Matrix Factorizations 2.6 The Leontief Input-Output Model 2.7 Applications to Computer Graphics 2.8 Subspaces of Rn 2.9 Dimension and Rank Supplementary Exercises 3. Determinants Introductory Example: Random Paths and Distortion 3.1 Introduction to Determinants 3.2 Properties of Determinants 3.3 Cramer's Rule, Volume, and Linear Transformations Supplementary Exercises 4. Vector Spaces Introductory Example: Space Flight and Control Systems 4.1 Vector Spaces and Subspaces 4.2 Null Spaces, Column Spaces, and Linear Transformations 4.3 Linearly Independent Sets
  • Bases 4.4 Coordinate Systems 4.5 The Dimension of a Vector Space 4.6 Rank 4.7 Change of Basis 4.8 Applications to Difference Equations 4.9 Applications to Markov Chains Supplementary Exercises 5. Eigenvalues and Eigenvectors Introductory Example: Dynamical Systems and Spotted Owls 5.1 Eigenvectors and Eigenvalues 5.2 The Characteristic Equation 5.3 Diagonalization 5.4 Eigenvectors and Linear Transformations 5.5 Complex Eigenvalues 5.6 Discrete Dynamical Systems 5.7 Applications to Differential Equations 5.8 Iterative Estimates for Eigenvalues Supplementary Exercises 6. Orthogonality and Least Squares Introductory Example: Readjusting the North American Datum 6.1 Inner Product, Length, and Orthogonality 6.2 Orthogonal Sets 6.3 Orthogonal Projections 6.4 The Gram-Schmidt Process 6.5 Least-Squares Problems 6.6 Applications to Linear Models 6.7 Inner Product Spaces 6.8 Applications of Inner Product Spaces Supplementary Exercises 7. Symmetric Matrices and Quadratic Forms Introductory Example: Multichannel Image Processing 7.1 Diagonalization of Symmetric Matrices 7.2 Quadratic Forms 7.3 Constrained Optimization 7.4 The Singular Value Decomposition 7.5 Applications to Image Processing and Statistics Supplementary Exercises 8. The Geometry of Vector Spaces Introductory Example: The Platonic Solids 8.1 Affine Combinations 8.2 Affine Independence 8.3 Convex Combinations 8.4 Hyperplanes 8.5 Polytopes 8.6 Curves and Surfaces 9. Optimization (Online Only) Introductory Example: The Berlin Airlift 9.1 Matrix Games 9.2 Linear Programming-Geometric Method 9.3 Linear Programming-Simplex Method 9.4 Duality 10. Finite-State Markov Chains (Online Only) Introductory Example: Google and Markov Chains 10.1 Introduction and Examples 10.2 The Steady-State Vector and Google's PageRank 10.3 Finite-State Markov Chains 10.4 Classification of States and Periodicity 10.5 The Fundamental Matrix 10.6 Markov Chains and Baseball Statistics Appendices A. Uniqueness of the Reduced Echelon Form B. Complex Numbers
Volume

study guide ISBN 9780321388834

Description

An integral part of this text, the Study Guide incorporates detailed solutions to every third odd-numbered exercise, as well as solutions to every odd-numbered writing exercise for which the main text only provides a hint.

by "Nielsen BookData"

Details

  • NCID
    BB07231454
  • ISBN
    • 9780321385178
    • 9780321388834
  • LCCN
    2010048460
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Boston
  • Pages/Volumes
    v.
  • Size
    27 cm
  • Classification
  • Subject Headings
Page Top