How do spores select where to settle? : a holographic motility analysis of Ulva zoospores on different surfaces
著者
書誌事項
How do spores select where to settle? : a holographic motility analysis of Ulva zoospores on different surfaces
(Springer theses : recognizing outstanding Ph. D. research)
Springer, c2011
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Doctoral thesis accepted by University of Heidelberg, Germany
内容説明・目次
内容説明
In this thesis, Matthias Heydt applies digital in-line holography to achieve for the first time a complete three dimensional and real time motion analysis of Ulva zoospores, both in solution and in the vicinity of different surfaces. These results provide previously unknown information about the behavior and mechanism spores use to select a suitable site for settlement. This work gives deeper insight into biofouling algae and stimulates new design strategies for antifouling coatings. Furthermore, the tracking system developed during this research could be used as a new system for assessing the antifouling performance on different surfaces at very early points in time, allowing disentanglement of surface conditioning and interaction of spores with pristine chemistries.
目次
1 INTRODUCTION
REFERENCES
2 THEORY OF HOLOGRAPHY
2.1 PROPERTIES OF LIGHT WAVES
2.1.1 Intensity
2.1.2 Interference
2.1.3 Coherence
2.1.4 Diffraction
2.2 HOLOGRAPHY
2.2.1 Principle
2.2.2 In-line holography
2.2.3 Numerical reconstruction
2.2.4 Resolution
REFERENCES
3 STATE OF THE ART
3.1 ALGA ULVA LINZA
3.2 INFLUENCE OF SURFACE PROPERTIES ON SETTLEMENT AND THE ADHESION STRENGTH OF ULVA SPORES
3.2.1 Wettability
3.2.2 Ethylene glycol containing surfaces coatings
3.2.3 Lubricity
3.2.4 Charge
3.2.5 Topography
3.3 MOTILITY OF MICROORGANISMS
3.3.1 Hydrodynamics basics: Life at low Reynolds number
3.3.2 Properties of swimming Microorganisms
3.3.3 Hydrodynamics interaction at solid boundaries
3.4 TRACKING IN 3D
REFERENCES
4 EXPERIMENTAL DETAILS
4.1 SETUP
4.1.1 Holographic Microscope
4.1.2 Wet cell
4.1.3 Subsonic noise isolation
4.1.4 Data acquisition program
4.1.5 Heat isolation
4.2 EXPERIMENTAL PROCEDURE
4.3 TRAJECTORY ANALYSIS
4.3.1 Reconstruction
4.3.2 Position determination
4.4 TRAJECTORY INTERPRETATION
4.5 SURFACE POSITION DETERMINATION
4.6 EXPERIMENTS WITH ULVA ZOOSPORES
4.7 INVESTIGATED SURFACES
REFERENCES
5 RESULTS: MOTILITY AND EXPLORATION BEHAVIOR OF ULVA ZOOSPORES
5.1 MOTILITY OF ULVA ZOOSPORES IN SOLUTION
5.1.1 Bulk motility: Global analysis of traces
5.1.2 Bulk motility: Detailed motion analysis for individual traces
5.1.2.1 Fast spore fraction
5.1.2.2 Slow spore fraction
5.1.3 Summary of the motility in solution
5.1.4 Discussion of the motility in solution
5.2 SURFACE EXPLORATION
5.2.1 Standard settlement study
5.2.2 Expected spore settlement during a holographic tracking experiment
5.2.3 Settlement analysis on the investigated surfaces
5.2.4 General exploration patterns
5.2.4.1 Swimming pattern: Orientation
5.2.4.2 Swimming pattern: Wobbling
5.2.4.3 Swimming pattern: Gyration
5.2.4.4 Swimming pattern: Hit and run
5.2.4.5 Swimming pattern: Spinning
5.2.4.6 Settlement
5.2.4.7 Swimming pattern: Hit and stick
5.3 SUMMARY OF THE RESULTS OF THE SURFACE EXPLORATION
5.3.1 General observations on motility for all investigated surfaces
5.3.2 Summary of results for the exploration behavior on AWG
5.3.3 Summary of results for the exploration behavior on PEG
5.3.4 Summary of results for the exploration behavior on FOTS
REFERENCES
6 DISCUSSION OF THE MOTILITY OF ULVA ZOOSPORES IN VICINITY TO SURFACES
6.1 OCCURRENCE AND TIME EVOLUTION OF THE EXPLORATION BEHAVIOR IN VICINITY TO DIFFERENT SURFACES
6.2 DETERRENT PROPERTIES OF THE PEG SURFACE
6.3 THE HIT AND STICK PATTERN AND ITS IMPORTANCE FOR THE OBSERVED HIGH AMOUNT OF SETTLEMENT ON FOTS
6.4 HYDRODYNAMIC TRAPPING OR ACTIVE EXTENDED EXPLORATION NEAR THE SURFACE?
REFERENCES
7 CONCLUSION AND OUTLOOK
REFERENCES
8 ACKNOWLEDGEMENT
9 APPENDIX
9.1 EXPLORATION BEHAVIOR ON AWG
9.1.1 Exploration on AWG: Swimming pattern analysis
9.1.1.1 AWG swimming pattern: Gyration
9.1.1.2 AWG swimming pattern: Hit and run
9.1.1.3 AWG swimming pattern: Spinning
9.1.2 Exploration on AWG: General behavior
9.2 EXPLORATION ON PEG COATING
9.2.1 Exploration on PEG: Swimming pattern analysis
9.2.1.1 PEG swimming pattern: Gyration
9.2.1.2 PEG swimming pattern: Hit and run
9.2.1.3 Detailed description of "the unusual" spore
9.2.2 Exploration on PEG: General behavior
9.3 EXPLORATION ON FLUORINATED MONOLAYER (FOTS) COATING
9.3.1 Exploration on FOTS: Swimming pattern analysis
9.3.1.1 FOTS swimming pattern: Hit and stick
9.3.1.2 FOTS swimming pattern: Spinning
9.3.1.3 FOTS swimming pattern: Gyration
9.3.2 Exploration on FOTS: General behavior
「Nielsen BookData」 より