Supramolecular polymer chemistry
Author(s)
Bibliographic Information
Supramolecular polymer chemistry
Wiley-VCH, c2012
Available at 18 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Presenting the work of pioneering experts in this exciting field of supramolecular polymer chemistry, this monograph covers an extensive range of applications, including drug delivery and catalysis. It focuses on new structures and phenomena of cyclodextrin-based supramolecular polymers and many other compound classes. While providing a deeper insight in macromolecular recognition and the mechanisms of living systems, this book also introduces fascinating novel phenomena beyond natural systems.
Table of Contents
Preface
PART I: Formation of Supramolecular Polymers
MULTIPLE HYDROGEN-BONDED SUPRAMOLECULAR POLYMERS
Introduction
General Concepts of Hydrogen-Bonding Motifs
Hydrogen-Bonded Main-Chain Supramolecular Polymers
From Supramolecular Polymers to Supramolecular Materials
Future Perspectives
CYCLODEXTRIN-BASED SUPRAMOLECULAR POLYMERS
Introduction
Supramolecular Polymers in the Solid State
Formation of Homo-Intramolecular and Intermolecular Complexes by CDs-Guest Conjugates
Formation of Intermolecular Complexes by CD and Guest Dimers
Artificial Molecular Muscle Based on c2-Daisy Chain
Conclusion and Outlook
SUPRA-MACROMOLECULAR CHEMISTRY: TOWARD DESIGN OF NEW ORGANIC MATERIALS FROM SUPRAMOLECULAR STANDPOINTS
Introduction
Small Molecules, Macromolecules, and Supramolecules: Design of their Composite Materials
Conclusion and Outlook
POLYMERIZATION WITH DITOPIC CAVITAND MONOMERS
Introduction
Cavitands
Self-Assembly of Ditopic Cavitand Monomers
Conclusions and Outlook
PART II: Supramolecular Polymers with Unique Structures
POLYMERS CONTAINING COVALENTLY BONDED AND SUPRAMOLECULARLY ATTACHED CYCLODEXTRINS AS SIDE GROUPS
Polymers with Covalently Bonded Cyclodextrins as Side Groups
Side Chain Polyrotaxanes and Polypseudorotaxanes
ANTIBODY DENDRIMERS AND DNA CATENANES
Molecular Recognition in Biological Systems
Antibody Supramolecules
DNA Supramolecules
Conclusions
CROWN ETHER-BASED POLYMERIC ROTAXANES
Introduction
Daisy Chains
Supramolecular Polymers
Dendritic Rotaxanes
Dendronized Polymers
Main Chain Rotaxanes Based on Polymeric Crowns (Including Crosslinked Systems)
Side Chain Rotaxanes Based on Pendent Crowns
Poly[2]rotaxanes
Poly[3]rotaxanes
Polymeric End Group Pseudorotaxanes
Chain Extension and Block Copolymers from End Groups
Star Polymers from Crown Functionalized Polymers
PART III: Properties and Functions
PROCESSIVE ROTAXANE CATALYSTS
Introduction
Results and Discussion
Conclusion
EMERGING BIOMEDICAL FUNCTIONS THROUGH 'MOBILE' POLYROTAXANES
Introduction
Multivalent Interaction using Ligand-Conjugated Polyrotaxanes
The Formation of Polyrotaxane Loops as a Dynamic Interface
Cytocleavable Polyrotaxanes for Gene Delivery
Conclusion
Appendix
SLIDE-RING MATERIALS USING POLYROTAXANE
Introduction
Pulley Effect of Slide-Ring Materials
Synthesis of Slide-Ring Materials
Scattering Studies of Slide-Ring Gels
Mechanical Properties of Slide-Ring Gels
Sliding Graft Copolymers
Recent Trends of Slide-Ring Materials
Concluding Remarks
STIMULI-RESPONSIVE SYSTEMS
Introduction
Stimuli and Responses
Examples of Stimuli-Responsive Supramolecular Polymer Systems
Concluding Remarks
PHYSICAL ORGANIC CHEMISTRY OF SUPRAMOLECULAR POLYMERS
Introduction and Background
Linear Supramolecular Polymers
Cross-Linked SPs Networks
Hybrid Polymer Gels
Conclusion
TOPOLOGICAL POLYMER CHEMISTRY: A QUEST FOR STRANGE POLYMER RINGS
Introduction
Systematic Classification of Nonlinear Polymer Topologies
Topological Isomerism
Designing Unusual Polymer Rings by Electrostatic Self-Assembly and Covalent Fixation
Conclusion and Future Perspectives
STRUCTURE AND DYNAMIC BEHAVIOR OF ORGANOMETALLIC ROTAXANES
Introduction
Conclusion
Appendix: Experimental Section
POLYROTAXANE NETWORKS AS A TOPOLOGICALLY CROSS-LINKED POLYMER: SYNTHESIS AND PROPERTIES
Introduction
Linking of Wheels of Main-Chain-Type Polyrotaxane -
Structurally Defined Polyrotaxane Network
Linking of Macrocyclic Units of Polymacrocycle with Axle Unit to Directly Yield a Polyrotaxane Network
Linking of Wheels of Polyrotaxane Cross-Linker to Afford Polyrotaxane Network: Design of the Cross-Linker
Conclusion
FROM CHEMICAL TOPOLOGY TO MOLECULAR MACHINES
Introduction
Copper(I)-Templated Synthesis of Catenanes: The 'Entwining' Approach and the 'Gathering and Threading' Strategy
Molecular Knots
Molecular Machines Based on Catenanes and Rotaxanes
Two-Dimensional Interlocking Arrays
A [3]rotaxane Acting as an Adjustable Receptor: Toward a Molecular 'Press'
Conclusion
by "Nielsen BookData"