Bibliographic Information

The robust maximum principle : theory and applications

Vladimir G. Boltyanski, Alexander S. Poznyak

(Systems & control)

Birkhäuser , Springer, c2012

Available at  / 5 libraries

Search this Book/Journal

Description and Table of Contents

Description

Covering some of the key areas of optimal control theory (OCT), a rapidly expanding field, the authors use new methods to set out a version of OCT's more refined 'maximum principle.' The results obtained have applications in production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games. This book explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control.

Table of Contents

Preface.- Introduction.- I Topics of Classical Optimal Control.- 1 Maximum Principle.- 2 Dynamic Programming.- 3 Linear Quadratic Optimal Control.- 4 Time-Optimization Problem.- II Tent Method.- 5 Tent Method in Finite Dimensional Spaces.- 6 Extrenal Problems in Banach Space.- III Robust Maximum Principle for Deterministic Systems.- 7 Finite Collection of Dynamic Systems.- 8 Multi-Model Bolza and LQ-Problem.- 9 Linear Multi-Model Time-Optimization.- 10 A Measured Space as Uncertainty Set.- 11 Dynamic Programming for Robust Optimization.- 12 Min-Max Sliding Mode Control.- 13 Multimodel Differential Games.- IV Robust Maximum Principle for Stochastic Systems.- 14 Multi-Plant Robust Control.- 15 LQ-Stochastic Multi-Model Control.- 16 A Compact as Uncertainty Set.- References.- Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BB07942634
  • ISBN
    • 9780817681517
  • Country Code
    xx
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    [S.l.],New York
  • Pages/Volumes
    xxii, 432 p.
  • Size
    25 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top