書誌事項

Proofs and computations

Helmut Schwichtenberg, Stanley S. Wainer

(Perspectives in logic)

Cambridge University Press, 2012

大学図書館所蔵 件 / 14

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Goedel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to 11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and 11-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.

目次

  • Preface
  • Preliminaries
  • Part I. Basic Proof Theory and Computability: 1. Logic
  • 2. Recursion theory
  • 3. Godel's theorems
  • Part II. Provable Recursion in Classical Systems: 4. The provably recursive functions of arithmetic
  • 5. Accessible recursive functions, ID< and 11-CA0
  • Part III. Constructive Logic and Complexity: 6. Computability in higher types
  • 7. Extracting computational content from proofs
  • 8. Linear two-sorted arithmetic
  • Bibliography
  • Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB08096296
  • ISBN
    • 9780521517690
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge
  • ページ数/冊数
    xiii, 465 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ