Reinforced concrete : mechanics and design

書誌事項

Reinforced concrete : mechanics and design

James K. Wight, James G. MacGregor

Pearson, c2012

6th ed

タイトル別名

Reinforced concrete : mechanics & design

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Reinforced Concrete: Mechanics and Design, 6/e is a perfect text for professionals in the field who need a comprehensive reference on concrete structures and the design of reinforced concrete. Reinforced concrete design encompasses both the art and science of engineering. This book presents the theory of reinforced concrete as a direct application of the laws of statics and mechanics of materials. In addition, it emphasizes that a successful design not only satisfies design rules, but also is capable of being built in a timely fashion and for a reasonable cost. A multi-tiered approach makes Reinforced Concrete: Mechanics and Design an outstanding textbook for a variety of university courses on reinforced concrete design. Topics are normally introduced at a fundamental level, and then move to higher levels where prior educational experience and the development of engineering judgment will be required.

目次

PREFACE xi ABOUT THE AUTHORS xv CHAPTER 1 INTRODUCTION 1-1 Reinforced Concrete Structures 1-2 Mechanics of Reinforced Concrete 1-3 Reinforced Concrete Members 1-4 Factors Affecting Choice of Reinforced Concrete for a Structure 1-5 Historical Development of Concrete and Reinforced Concrete as Structural Materials 1-6 Building Codes and the ACI Code CHAPTER 2 THE DESIGN PROCESS 2-1 Objectives of Design 2-2 The Design Process 2-3 Limit States and the Design of Reinforced Concrete 2-4 Structural Safety 2-5 Probabilistic Calculation of Safety Factors 2-6 Design Procedures Specified in the ACI Building Code 2-7 Load Factors and Load Combinations in the 2011 ACI Code 2-8 Loadings and Actions 2-9 Design for Economy 2-10 Sustainability 2-11 Customary Dimensions and Construction Tolerances 2-12 Inspection 2-13 Accuracy of Calculations 2-14 Handbooks and Design Aids CHAPTER 3 MATERIALS 3-1 Concrete 3-2 Behavior of Concrete Failing in Compression 3-3 Compressive Strength of Concrete 3-4 Strength Under Tensile and Multiaxial Loads 3-5 Stress-Strain Curves for Concrete 3-6 Time-Dependent Volume Changes 3-7 High-Strength Concrete 3-8 Lightweight Concrete 3-9 Fiber Reinforced Concrete 3-10 Durability of Concrete 3-11 Behavior of Concrete Exposed to High and Low Temperatures 3-12 Shotcrete 3-13 High-Alumina Cement 3-14 Reinforcement 3-15 Fiber-Reinforced Polymer (FRP) Reinforcement 3-16 Prestressing Steel CHAPTER 4 FLEXURE: BEHAVIOR AND NOMINAL STRENGTH OF BEAM SECTIONS 4-1 Introduction 4-2 Flexure Theory 4-3 Simplifications in Flexure Theory for Design 4-4 Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections 4-5 Definition of Balanced Conditions 4-6 Code Definitions of Tension-Controlled and Compression-Controlled Sections 4-7 Beams with Compression Reinforcement 4-8 Analysis of Flanged Sections 4-9 Unsymmetrical Beam Sections CHAPTER 5 FLEXURAL DESIGN OF BEAM SECTIONS 5-1 Introduction 5-2 Analysis of Continuous One-Way Floor Systems 5-3 Design of Singly-Reinforced Beam Sections with Rectangular Compression Zones 5-4 Design of Doubly-Reinforced Beam Sections 5-5 Design of Continuous One-Way Slabs CHAPTER 6 SHEAR IN BEAMS 6-1 Introduction 6-2 Basic Theory 6-3 Behavior of Beams Failing in Shear 6-4 Truss Model of the Behavior of Slender Beams Failing in Shear 6-5 Analysis and Design of Reinforced Concrete Beams for Shear-ACI Code 6-6 Other Shear Design Methods 6-7 Hanger Reinforcement 6-8 Tapered Beams 6-9 Shear in Axially Loaded Members 6-10 Shear in Seismic Regions CHAPTER 7 TORSION 7-1 Introduction and Basic Theory 7-2 Behavior of Reinforced Concrete Members Subjected to Torsion 7-3 Design Methods for Torsion 7-4 Thin-Walled Tube/Plastic Space Truss Design Method 7-5 Design for Torsion and Shear-ACI Code 7-6 Application of ACI Code Design Method for Torsion CHAPTER 8 DEVELOPMENT, ANCHORAGE, AND SPLICING OF REINFORCEMENT 8-1 Introduction 8-2 Mechanism of Bond Transfer 8-3 Development Length 8-4 Hooked Anchorages 8-5 Headed and Mechanically Anchored Bars in Tension 8-6 Design for Anchorage 8-7 Bar Cutoffs and Development of Bars in Flexural Members 8-8 Reinforcement Continuity and Structural Integrity Requirements 8-9 Splices CHAPTER 9 SERVICEABILITY 9-1 Introduction 9-2 Elastic Analysis of Stresses in Beam Sections 9-3 Cracking 9-4 Deflections of Concrete Beams 9-5 Consideration of Deflections in Design 9-6 Frame Deflections 9-7 Vibrations 9-8 Fatigue CHAPTER 10 CONTINUOUS BEAMS AND ONE-WAY SLABS 10-1 Introduction 10-2 Continuity in Reinforced Concrete Structures 10-3 Continuous Beams 10-4 Design of Girders 10-5 Joist Floors 10-6 Moment Redistribution CHAPTER 11 COLUMNS: COMBINED AXIAL LOAD AND BENDING 11-1 Introduction 11-2 Tied and Spiral Columns 11-3 Interaction Diagrams 11-4 Interaction Diagrams for Reinforced Concrete Columns 11-5 Design of Short Columns 11-6 Contributions of Steel and Concrete to Column Strength 11-7 Biaxially Loaded Columns CHAPTER 12 SLENDER COLUMNS 12-1 Introduction 12-2 Behavior and Analysis of Pin-Ended Columns 12-3 Behavior of Restrained Columns in Nonsway Frames 12-4 Design of Columns in Nonsway Frames 12-5 Behavior of Restrained Columns in Sway Frames 12-6 Calculation of Moments in Sway Frames Using Second-Order Analyses 12-7 Design of Columns in Sway Frames 12-8 General Analysis of Slenderness Effects 12-9 Torsional Critical Load CHAPTER 13 TWO-WAY SLABS: BEHAVIOR, ANALYSIS, AND DESIGN 13-1 Introduction 13-2 History of Two-Way Slabs 13-3 Behavior of Slabs Loaded to Failure in Flexure 13-4 Analysis of Moments in Two-Way Slabs 13-5 Distribution of Moments in Slabs 13-6 Design of Slabs 13-7 The Direct-Design Method 13-8 Equivalent-Frame Methods 13-9 Use of Computers for an Equivalent-Frame Analysis 13-10 Shear Strength of Two-Way Slabs 13-11 Combined Shear and Moment Transfer in Two-Way Slabs 13-12 Details and Reinforcement Requirements 13-13 Design of Slabs Without Beams 13-14 Design of Slabs with Beams in Two Directions 13-15 Construction Loads on Slabs 13-16 Deflections in Two-Way Slab Systems 13-17 Use of Post-Tensioning CHAPTER 14 TWO-WAY SLABS: ELASTIC AND YIELD-LINE ANALYSES 14-1 Review of Elastic Analysis of Slabs 14-2 Design Moments from a Finite-Element Analysis 14-3 Yield-Line Analysis of Slabs: Introduction 14-4 Yield-Line Analysis: Applications for Two-Way Slab Panels 14-5 Yield-Line Patterns at Discontinuous Corners 14-6 Yield-Line Patterns at Columns or at Concentrated Loads CHAPTER 15 FOOTINGS 15-1 Introduction 15-2 Soil Pressure Under Footings 15-3 Structural Action of Strip and Spread Footings 15-4 Strip or Wall Footings 15-5 Spread Footings 15-6 Combined Footings 15-7 Mat Foundations 15-8 Pile Caps CHAPTER 16 SHEAR FRICTION, HORIZONTAL SHEAR TRANSFER, AND COMPOSITE CONCRETE BEAMS 16-1 Introduction 16-2 Shear Friction 16-3 Composite Concrete Beams CHAPTER 17 DISCONTINUITY REGIONS AND STRUT-AND-TIE MODELS 17-1 Introduction 17-2 Design Equation and Method of Solution 17-3 Struts 17-4 Ties 17-5 Nodes and Nodal Zones 17-6 Common Strut-and-Tie Models 17-7 Layout of Strut-and-Tie Models 17-8 Deep Beams 17-9 Continuous Deep Beams 17-10 Brackets and Corbels 17-11 Dapped Ends 17-12 Beam-Column Joints 17-13 Bearing Strength 17-14 T-Beam Flanges CHAPTER 18 WALLS AND SHEAR WALLS 18-1 Introduction 18-2 Bearing Walls 18-3 Retaining Walls 18-4 Tilt-Up Walls 18-5 Shear Walls 18-6 Lateral Load-Resisting Systems for Buildings 18-7 Shear Wall-Frame Interaction 18-8 Coupled Shear Walls 18-9 Design of Structural Walls-General 18-10 Flexural Strength of Shear Walls 18-11 Shear Strength of Shear Walls 18-12 Critical Loads for Axially Loaded Walls CHAPTER 19 DESIGN FOR EARTHQUAKE RESISTANCE 19-1 Introduction 19-2 Seismic Response Spectra 19-3 Seismic Design Requirements 19-4 Seismic Forces on Structures 19-5 Ductility of Reinforced Concrete Members 19-6 General ACI Code Provisions for Seismic Design 19-7 Flexural Members in Special Moment Frames 19-8 Columns in Special Moment Frames 19-9 Joints of Special Moment Frames 19-10 Structural Diaphragms 19-11 Structural Walls 19-12 Frame Members not Proportioned to Resist Forces Induced by Earthquake Motions 19-13 Special Precast Structures 19-14 Foundations APPENDIX A APPENDIX B INDEX

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BB08603383
  • ISBN
    • 9780132176521
  • LCCN
    2011019214
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Upper Saddle River, N.J.
  • ページ数/冊数
    xviii, 1157 p.
  • 大きさ
    26 cm
  • 分類
ページトップへ