Statistical inference in multifractal random walk models for financial time series

書誌事項

Statistical inference in multifractal random walk models for financial time series

Cristina Sattarhoff

(Volkswirtschaftliche Analysen, Bd. 18)

P. Lang, c2011

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Originally presented as the author's thesis (doctoral)--Hamburg Universität, 2010

Includes bibliographical references (p. [97]-101)

内容説明・目次

内容説明

The dynamics of financial returns varies with the return period, from high-frequency data to daily, quarterly or annual data. Multifractal Random Walk models can capture the statistical relation between returns and return periods, thus facilitating a more accurate representation of real price changes. This book provides a generalized method of moments estimation technique for the model parameters with enhanced performance in finite samples, and a novel testing procedure for multifractality. The resource-efficient computer-based manipulation of large datasets is a typical challenge in finance. In this connection, this book also proposes a new algorithm for the computation of heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimators that can cope with large datasets.

目次

Contents: Financial econometrics - Multifractal volatility - Multifractal Random Walk - GMM estimation - Monte Carlo simulation study - Multifractality test - Empirical analysis of international stock index data - Financial markets efficiency - HAC estimation - Stylized facts of financial time series - Fat-tailed distribution - Scale invariance - MATLAB.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB08624022
  • ISBN
    • 9783631606735
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Frankfurt am Main
  • ページ数/冊数
    101 p.
  • 大きさ
    21 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ