Calculus : late transcendentals
Author(s)
Bibliographic Information
Calculus : late transcendentals
Wiley, c2013
10th ed., international student version
Available at / 6 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes index
Description and Table of Contents
Description
The new edition of Calculus continues to bring together the best of both new and traditional curricula in an effort to meet the needs of even more instructors teaching calculus. The author team's extensive experience teaching from both traditional and innovative books and their expertise in developing innovative problems put them in an unique position to make this new curriculum meaningful for those going into mathematics and those going into the sciences and engineering. This new text exhibits the same strengths from earlier editions including an emphasis on modeling and a flexible approach to technology.
Table of Contents
- 0 BEFORE CALCULUS 1 0.1 Functions 1 0.2 New Functions from Old 15 0.3 Families of Functions 27 0.4 Inverse Functions 38 1 LIMITS AND CONTINUITY 49 1.1 Limits (An Intuitive Approach) 49 1.2 Computing Limits 62 1.3 Limits at Infinity
- End Behavior of a Function 71 1.4 Limits (Discussed More Rigorously) 81 1.5 Continuity 90 1.6 Continuity of Trigonometric Functions 101 2 THE DERIVATIVE 110 2.1 Tangent Lines and Rates of Change 110 2.2 The Derivative Function 122 2.3 Introduction to Techniques of Differentiation 134 2.4 The Product and Quotient Rules 142 2.5 Derivatives of Trigonometric Functions 148 2.6 The Chain Rule 153 2.7 Implicit Differentiation 161 2.8 Related Rates 168 2.9 Local Linear Approximation
- Differentials 175 3 THE DERIVATIVE IN GRAPHING AND APPLICATIONS 187 3.1 Analysis of Functions I: Increase, Decrease, and Concavity 187 3.2 Analysis of Functions II: Relative Extrema
- Graphing Polynomials 197 3.3 Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents 207 3.4 Absolute Maxima and Minima 216 3.5 Applied Maximum and Minimum Problems 224 3.6 Rectilinear Motion 238 3.7 Newton s Method 246 3.8 Rolle s Theorem
- Mean-Value Theorem 252 4 INTEGRATION 265 4.1 An Overview of the Area Problem 265 4.2 The Indefinite Integral 271 4.3 Integration by Substitution 281 4.4 The Definition of Area as a Limit
- Sigma Notation 287 4.5 The Definite Integral 300 4.6 The Fundamental Theorem of Calculus 309 4.7 Rectilinear Motion Revisited Using Integration 322 4.8 Average Value of a Function and its Applications 332 4.9 Evaluating Definite Integrals by Substitution 337 5 APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY, SCIENCE, AND ENGINEERING 347 5.1 Area Between Two Curves 347 5.2 Volumes by Slicing
- Disks and Washers 355 5.3 Volumes by Cylindrical Shells 365 5.4 Length of a Plane Curve 371 5.5 Area of a Surface of Revolution 377 5.6 Work 382 5.7 Moments, Centers of Gravity, and Centroids 391 5.8 Fluid Pressure and Force 400 6 EXPONENTIAL, LOGARITHMIC, AND INVERSE TRIGONOMETRIC FUNCTIONS 409 6.1 Exponential and Logarithmic Functions 409 6.2 Derivatives and Integrals Involving Logarithmic Functions 420 6.3 Derivatives of Inverse Functions
- Derivatives and Integrals Involving Exponential Functions 427 6.4 Graphs and Applications Involving Logarithmic and Exponential Functions 434 6.5 L Hopital s Rule
- Indeterminate Forms 441 6.6 Logarithmic and Other Functions Defined by Integrals 450 6.7 Derivatives and Integrals Involving Inverse Trigonometric Functions 462 6.8 Hyperbolic Functions and Hanging Cables 472 7 PRINCIPLES OF INTEGRAL EVALUATION 488 7.1 An Overview of Integration Methods 488 7.2 Integration by Parts 491 7.3 Integrating Trigonometric Functions 500 7.4 Trigonometric Substitutions 508 7.5 Integrating Rational Functions by Partial Fractions 514 7.6 Using Computer Algebra Systems and Tables of Integrals 523 7.7 Numerical Integration
- Simpson s Rule 533 7.8 Improper Integrals 547 8 MATHEMATICAL MODELING WITH DIFFERENTIAL EQUATIONS 561 8.1 Modeling with Differential Equations 561 8.2 Separation of Variables 568 8.3 Slope Fields
- Euler s Method 579 8.4 First-Order Differential Equations and Applications 586 9 INFINITE SERIES 596 9.1 Sequences 596 9.2 Monotone Sequences 607 9.3 Infinite Series 614 9.4 Convergence Tests 623 9.5 The Comparison, Ratio, and Root Tests 631 9.6 Alternating Series
- Absolute and Conditional Convergence 638 9.7 Maclaurin and Taylor Polynomials 648 9.8 Maclaurin and Taylor Series
- Power Series 659 9.9 Convergence of Taylor Series 668 9.10 Differentiating and Integrating Power Series
- Modeling with Taylor Series 678 10 PARAMETRIC AND POLAR CURVES
- CONIC SECTIONS 692 10.1 Parametric Equations
- Tangent Lines and Arc Length for Parametric Curves 692 10.2 Polar Coordinates 705 10.3 Tangent Lines, Arc Length, and Area for Polar Curves 719 10.4 Conic Sections 730 10.5 Rotation of Axes
- Second-Degree Equations 748 10.6 Conic Sections in Polar Coordinates 754 11 THREE-DIMENSIONAL SPACE
- VECTORS 767 11.1 Rectangular Coordinates in 3-Space
- Spheres
- Cylindrical Surfaces 767 11.2 Vectors 773 11.3 Dot Product
- Projections 785 11.4 Cross Product 795 11.5 Parametric Equations of Lines 805 11.6 Planes in 3-Space 813 11.7 Quadric Surfaces 821 11.8 Cylindrical and Spherical Coordinates 832 12 VECTOR-VALUED FUNCTIONS 841 12.1 Introduction to Vector-Valued Functions 841 12.2 Calculus of Vector-Valued Functions 848 12.3 Change of Parameter
- Arc Length 858 12.4 Unit Tangent, Normal, and Binormal Vectors 868 12.5 Curvature 873 12.6 Motion Along a Curve 882 12.7 Kepler s Laws of Planetary Motion 895 13 PARTIAL DERIVATIVES 906 13.1 Functions of Two or More Variables 906 13.2 Limits and Continuity 917 13.3 Partial Derivatives 927 13.4 Differentiability, Differentials, and Local Linearity 940 13.5 The Chain Rule 949 13.6 Directional Derivatives and Gradients 960 13.7 Tangent Planes and Normal Vectors 971 13.8 Maxima and Minima of Functions of Two Variables 977 13.9 Lagrange Multipliers 989 14 MULTIPLE INTEGRALS 1000 14.1 Double Integrals 1000 14.2 Double Integrals over Nonrectangular Regions 1009 14.3 Double Integrals in Polar Coordinates 1018 14.4 Surface Area
- Parametric Surfaces 1026 14.5 Triple Integrals 1039 14.6 Triple Integrals in Cylindrical and Spherical Coordinates 1048 14.7 Change of Variables in Multiple Integrals
- Jacobians 1058 14.8 Centers of Gravity Using Multiple Integrals 1071 15 TOPICS IN VECTOR CALCULUS 1084 15.1 Vector Fields 1084 15.2 Line Integrals 1094 15.3 Independence of Path
- Conservative Vector Fields 1111 15.4 Green s Theorem 1122 15.5 Surface Integrals 1130 15.6 Applications of Surface Integrals
- Flux 1138 15.7 The Divergence Theorem 1148 15.8 Stokes Theorem 1158 A APPENDICES A GRAPHING FUNCTIONS USING CALCULATORS AND COMPUTER ALGEBRA SYSTEMS A1 B TRIGONOMETRY REVIEW A13 C SOLVING POLYNOMIAL EQUATIONS A27 D SELECTED PROOFS A34 ANSWERS TO ODD-NUMBERED EXERCISES A45 INDEX I-1 WEB APPENDICES (online only) Available for download at www.wiley.com/go/global/anton and in WileyPLUS. E REAL NUMBERS, INTERVALS, AND INEQUALITIES F ABSOLUTE VALUE G COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS H DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS I EARLY PARAMETRIC EQUATIONS OPTION J MATHEMATICAL MODELS K THE DISCRIMINANT L SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS WEB PROJECTS: Expanding the Calculus Horizon (online only) Available for download at www.wiley.com/go/global/anton and in WileyPLUS. BLAMMO THE HUMAN CANNONBALL COMET COLLISION HURRICANE MODELING ITERATION AND DYNAMICAL SYSTEMS RAILROAD DESIGN ROBOTICS
by "Nielsen BookData"