Introduction to mechatronic design



Introduction to mechatronic design

J. Edward Carryer, R. Matthew Ohline, Thomas W. Kenny

Pearson Education, c2011

International ed

大学図書館所蔵 件 / 4



Includes bibliographical references and index



Introduction to Mechatronic Design is ideal for upper level and graduate Mechatronics courses in Electrical, Computing, or Mechanical & Aerospace Engineering.?Unlike other texts on mechatronics that focus on derivations and calculations, Introduction to Mechatronics, 1e, takes a narrative approach, emphasizing the importance of building intuition and understanding before diving into the math. The authors believe that integration is the core of mechatronics-and students must have a command of each of the domains to create the balance necessary for successful mechatronic design-and devote sections of the book to each area, including mechanical, electrical, and software disciplines, as well as a section on system design and engineering. A robust package of teaching and learning resources accompanies the book.


Part 1: IntroductionPrefaceChapter 1 Introduction1.1 Philosophy1.3 Who Should Study Mechatronics? 1.3 How to Use this Book1.4 Summary Part 2: SoftwareChapter 2 What's a Micro?2.1 Introduction2.2 What IS a "Micro"?2.3 Microprocessors, Microcontrollers, Digital Signal Processors (DSP's) and More2.4 Microcontroller Architecture2.5 The Central Processing Unit (CPU)2.5.1 Representing Numbers in the Digital Domain2.5.2 The Arithmetic Logic Unit (ALU) 2.6 The Data Bus and the Address Bus2.7 Memory2.8 Subsystems and Peripherals2.9 Von Neumann Architecture2.10 The Harvard Architecture2.11 Real World Examples2.11.1 The Freescale MC9S12C32 Microcontroller2.11.2 The Microchip PIC12F609 Microcontroller2.12 Where to Find More Information2.13 Homework Problems Chapter 3 Microcontroller Math and Number Manipulation3.1 Introduction3.2 Number Bases and Counting3.3 Representing Negative Numbers3.4 Data Types3.5 Sizes of Common Data Types3.6 Arithmetic on Fixed Size Variables3.7 Modulo Arithmetic3.8 Math Shortcuts3.8 Boolean Algebra3.9 Manipulating Individual Bits3.10 Testing Individual Bits3.11 Homework Problems Chapter 4: Programming Languages4.1 Introduction4.2 Machine Language4.3 Assembly Language4.4 High-Level Languages4.5 Interpreters4.6 Compilers4.7 Hybrid Compiler/Interpreters4.8 Integrated Development Environments (IDEs)4.9 Choosing a Programming Language4.10 Homework Problems Chapter 5: Program Structures for Embedded Systems5.1 Background5.2 Event Driven Programming5.3 Event Checkers5.4 Services5.5 Building an Event Driven Program5.6 An Example5.7 Summary of Event Driven Programming5.8 State Machines5.9 A State Machine in Software5.10 The Cockroach Example as a State Machine5.11 SummaryHomework Problems Chapter 6 Software Design6.1 Introduction6.2 Building as a Metaphor for Creating Software6.3 Introducing Some Software Design Techniques6.3.1 Decomposition6.3.2 Abstraction and Information Hiding6.3.3 Pseudo-Code6.4 Software Design Process6.4.1 Generating Requirements6.4.2 Defining the Program Architecture6.4.3 The Performance Specification6.4.4 The Interface Specification6.4.5 Detail Design6.4.6 Implementation6.4.6.1 Intra-Module Organization6.4.6.2 Writing the Code6.4.7 Unit Testing6.4.8 Integration6.5 The Sample Problem6.5.1 Requirements for the Morse Code Receiver6.5.2 The Morse Code Receiver System Architecture6.5.3 The Morse Code Receiver Software Architecture6.5.4 The Morse Code Receiver Performance Specifications6.5.5 The Morse Code Receiver Interface Specification6.5.5.1 The Button Module Interface Specification6.5.5.2 The Morse Elements Module Interface Specification6.5.5.3 The Morse Decode Module Interface Specification6.5.5.4 The LCD Display Module Interface Specification6.5.6 The Morse Code Receiver Detail Design6.5.6.1 Button Module Detail Design6.5.6.2 Morse Elements Detail Design6.5.6.3 Morse Decode Detail Design6.5.6.4 Display Detail Design6.5.6.5 Main Detail Design6.5.7 The Morse Code Receiver Implementation6.5.8 The Morse Code Receiver Unit Testing. 6-286.5.9 The Morse Code Receiver Integration6.6 Homework Problems Chapter 7 Communications7.1: Introduction7.2: Without a Medium, there is no Message7.3: Bit-Parallel and Bit-Serial Communications7.3.1: Bit-Serial Communications7.3.1.1: Synchronous Serial Communications7.3.1.2: Asynchronous Serial Communications7.3.2: Bit Parallel Communications7.4: Signaling Levels7.4.1: TTL/CMOS Levels7.4.2: RS-2327.4.3: RS-485 7.5: Communicating Over Limited Bandwidth Channels7.5.1: Telephones and Modems7.5.1.1: Modulation Techniques7.5.1.2: Amplitude Modulation (AM) Frequency Modulation (FM) Phase Modulation (PM) Quadrature Amplitude Modulation (QAM)7.6: Communicating with Light7.7: Communicating over a Radio7.7.1: RF Remote Controls7.7.2: RF Data Links7.7.3: RF Networks7.8: Homework Problems Chapter 8 : Microcontroller Peripherals8.1 : Accessing the Control Registers8.2 : The Parallel Input/Output Subsystem8.2.1 : The Data Direction Register8.2.2 : The Input/Output Register(s)8.2.3 : Shared Function Pins8.3 : Timer Subsystems8.3.1 : Timer Basics8.3.2 : Timer Overflow8.3.3 : Output Compare8.3.4 : Input Capture8.3.5 : Combining Input Capture and Output Compare to Control an Engine8.4 : Pulse Width Modulation (PWM)8.5 : PWM Using the Output Compare System8.6 : The Analog-to-Digital (A/D) Converter Subsystem8.6.1 : The Process for Converting an Analog Input to a Digital Value8.6.2 : The A/D Converter Clock8.6.3 : Multiplexer Switching Transients and DC Effects8.6.4 : Automating the A/D Conversion Process8.7 : Homework Problems Part 3: ElectronicsChapter 9 Basic Circuit Analysis and Passive Components9.1 Voltage, Current and Power9.2 Circuits and Ground9.3 Laying Down the Laws9.4 Resistance9.4.1 Resistors in Series and Parallel9.4.2 The Voltage Divider9.5 Thevenin Equivalents9.6 Capacitors9.6.1 Capacitors in Series and Parallel9.6.2 Capacitors and Time-Varying Signals9.7 Inductors9.7.1 Inductors and Time-Varying Signals9.8 The Time and Frequency Domains9.9 Circuit Analysis with Multiple Component Types9.9.1 Basic RC Circuit Configurations9.9.2 Low-Pass RC Filter Behavior in the Time Domain9.9.3 High-Pass RC Filter Behavior in the Time Domain9.9.4 RL Circuit Behavior in the Time Domain9.9.5 Low-Pass RC Filter Behavior in the Frequency Domain9.9.6 High-Pass RC Filter Behavior in the Frequency Domain9.9.7 High-Pass RC Filter with a DC Bias9.10 Simulation Tools9.10.1 Limitations of Simulation Tools9.11 Real Voltage Sources9.12 Real Measurements9.12.1 Measuring Voltage9.12.2 Measuring Current9.13 Real Resistors9.13.1 A Model for a Real Resistor9.13.2 Resistor Construction Basics9.13.3 Carbon Film Resistors9.13.4 Metal Film Resistors9.13.5 Power Dissipation in Resistors9.13.6 Potentiometers9.13.7 Multi-Resistor Packages9.13.8 Choosing Resistors9.14 Real Capacitors9.14.1 A Model for a Real Capacitor9.14.2 Capacitor Construction Basics9.14.3 Polar vs. Non-Polar Capacitors9.14.4 Ceramic Disk Capacitors9.14.5 Monolithic Ceramic Capacitors9.14.6 Aluminum Electrolytic Capacitors9.14.7 Tantalum Capacitors9.14.8 Film Capacitors9.14.9 Electric Double Layer Capacitors / Super capacitors9.14.10 Capacitor Labeling9.14.10.1 Ceramic Capacitor (Disc and MLC) Labeling9.14.10.2 Aluminum Electrolytic Capacitor Labeling9.14.10.3 Tantalum Capacitor Labeling9.14.10.4 Film Capacitor Labeling9.14.11 Choosing a Capacitor9.15 Homework Problems Chapter 10 Semiconductors10.1 Doping, Holes and Electrons10.2 Diodes10.2.1 The VI Characteristic for Diodes10.2.2 The Magnitude of Vf10.2.3 Reverse Recovery10.2.4 Schottky Diodes10.2.5 Zener Diodes10.2.6 Light Emitting Diodes10.2.7 Photo-Diodes10.3 Bipolar Junction Transistors10.3.1 The Darlington Pair10.3.2 The Photo-Transistor10.4 MOSFETs10.5 hoosing Between BJTs and MOSFETs10.5.1 When Will a BJT be the Best (or Only) Choice?10.5.2 When Will a MOSFET be the Best (or Only) Choice?10.5.3 How Do You Choose When Either a MOSFET or a BJT Could Work?10.6 Multi-Transistor Circuits10.7 Reading Transistor Data Sheets10.7.1 Reading a BJT Data Sheet10.7.2 Reading a MOSFET Data Sheet10.7.3 A Sample Application10.7.4 A Potpourri of Transistor Circuits10.8 Homework Problems Chapter 11 : Operational Amplifiers11.1 : Operational Amplifier Behavior11.2 : Negative Feedback11.3 : The Ideal Op-Amp11.4 : Analyzing Op-Amp Circuits11.4.1 : The Golden Rules11.4.2 : The Non-Inverting Op-Amp Configuration11.4.3 : The Inverting Op-Amp Configuration11.4.3.1 : The Virtual Ground11.4.3.2 : There is Nothing Magic About Ground11.4.4 : The Unity Gain Buffer11.4.5 : The Difference Amplifier Configuration11.4.6 : The Summer Configuration11.4.7 : The Trans-Resistive Configuration11.4.8 : Computation with Op-Amps11.5 : The Comparator11.5.1 : Comparator Circuits11.6 : Homework Problems Chapter 12 : Real Operational Amplifiers and Comparators12.1 : Real Op-Amp Characteristics - How the Ideal Assumptions Fail12.1.1 : Non-Infinite Gain12.1.2 : Variation in Open Loop Gain with Frequency12.1.3 : Input Current is Not Zero12.1.3.1 : Input Bias Current and Input Offset Current12.1.3.2 : Input Impedance12.1.4 : The Output Voltage Source is Not Ideal12.1.5 : Other Non-Idealities12.1.5.1 : Input Offset Voltage12.1.5.2 : Power Supplies12.1.5.3 : Input Common Mode Voltage Range12.1.5.5 : Input Common Mode Rejection Ratio12.1.5.6 : Temperature Effects12.2 : Reading an Op-Amp Data Sheet12.2.1 : Maxima, Minima and Typical Values12.2.2 : The Front Page12.2.3 : The Absolute Maximum Ratings Section12.2.4 : The Electrical Characteristics Section12.2.5 : The Packaging Section12.2.6 : The Typical Applications Section12.3 : Reading a Comparator Data Sheet12.3.1 : Comparator Packaging12.4 : Comparing Op-Amps12.5 : Homework Problems Chapter 13 Sensors13.1 Introduction13.2 Sensor Output & Microcontroller Inputs13.3 Sensor Design13.3.1 Measuring Temperature with a Thermistor13.3.2 Measuring Acceleration13.3.3 Definitions of Sensor Performance Characteristics13.4 Fundamental Sensors and Interface Circuits13.4.1 Switches as Sensors13.4.2 Interfacing to Switches13.4.3 Resistive Sensors13.4.4 Interfacing to Resistive Sensors13.4.4.1 Using a Resistive Sensor in a Voltage Divider13.4.4.2 Measuring Resistance Using a Current Source13.4.4.3 The Constant Current Circuit13.4.4.4 The Wheatstone Bridge13.4.5 Capacitive Sensors13.4.6 Interfacing to Capacitive Sensors13.4.6.1 Measuring Capacitance with a Step Input13.4.6.2 Measuring Capacitance with an Oscillator13.4.6.3 Measuring Capacitance with a Wheatstone Bridge13.5 A Survey of Sensors13.5.1 Light Sensors13.5.1.1 Photodiodes13.5.1.2 Phototransistors13.5.1.3 Emitter-Detector Pair Modules13.5.1.4 Photocells13.5.2 Strain Sensors13.5.2.1 Metal Foil Strain Gages13.5.2.2 Piezoresistive Strain Gages13.5.2.3 Load Cells13.5.3 Temperature Sensors13.5.3.1 Thermocouples13.5.3.2 Thermistors13.5.4 Magnetic Field Sensors13.5.4.1 Hall Effect Sensors13.5.4.3 Reed Switches13.5.5 Proximity Sensors13.5.5.1 Capacitive Proximity Sensors13.5.5.2 Inductive Proximity Sensors13.5.5.3 Ultrasonic Proximity Sensors13.5.6 Position Sensors13.5.6.1 Potentiometers13.5.6.2 Optical Encoders13.5.6.3 Inductive Pickups / Gear Tooth Sensors13.5.6.4 Reflective Infrared Sensors13.5.6.5 Capacitive Displacement Sensors13.5.6.6 Ultrasonic Displacement Sensors13.5.6.7 Flex Sensors13.5.7 Acceleration Sensors

「Nielsen BookData」 より


  • ISBN
    • 9780136095217
  • LCCN
  • 出版国コード
  • タイトル言語コード
  • 本文言語コード
  • 出版地
    Upper Saddle River
  • ページ数/冊数
    808 p.
  • 大きさ
    26 cm
  • 分類
  • 件名