The classification of critical points, caustics and wave fronts
著者
書誌事項
The classification of critical points, caustics and wave fronts
(Modern Birkhäuser classics, Singularities of differentiable maps / V.I. Arnold,
Birkhäuser , Springer Science+Business Media, c2012
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Originally published as Vol. 82 in the series monographs in mathematics"--T.p. verso
"Reprint of the 1985 edition"--T.p
内容説明・目次
内容説明
Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science. The three parts of this first volume of a two-volume set deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities. The second volume describes the topological and algebro-geometrical aspects of the theory: monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities.
The first volume has been adapted for the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level. With this foundation, the book's sophisticated development permits readers to explore more applications than previous books on singularities.
目次
Part I. Basic concepts.- The simplest examples.- The classes Sigma^ I .- The quadratic differential of a map.- The local algebra of a map and the Weierstrass preparation theorem.- The local multiplicity of a holomorphic map.- Stability and infinitesimal stability.- The proof of the stability theorem.- Versal deformations.- The classification of stable germs by genotype.- Review of further results.- Part II. Critical points of smooth functions.- A start to the classification of critical points.- Quasihomogeneous and semiquasihomogeneous singularities.- The classification of quasihomogeneous functions.- Spectral sequences for the reduction to normal forms.- Lists of singularities.- The determinator of singularities.- Real, symmetric and boundary singularities.- Part III. Singularities of caustics and wave fronts.- Lagrangian singularities.- Generating families.- Legendrian singularities.- The classification of Lagrangian and Legendrian singularities.- The bifurcation of caustics and wave fronts.- References.- Further references.- Subject Index.
「Nielsen BookData」 より