Complex-valued neural networks
著者
書誌事項
Complex-valued neural networks
(Studies in computational intelligence, v. 400)
Springer, c2012
2nd ed
- : pbk
大学図書館所蔵 全9件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Original Japanese language edition published by Saiensu-sha Co., Ltd. ... Tokyo ... copyright 2005..."--T.p. verso
Includes bibliographical references (p. [179]-192) and index
内容説明・目次
内容説明
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields.
In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections.
The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplinary studies to realize comfortable society. It is also helpful to those who carry out research and development regarding new products and services at companies. The author wrote this book hoping in particular that it provides the readers with meaningful hints to make good use of neural networks in fully practical applications. The book emphasizes basic ideas and ways of thinking. Why do we need to consider neural networks that deal with complex numbers? What advantages do the complex-valued neural networks have? What is the origin of the advantages? In what areas do they develop principal applications? This book answers these questions by describing details and examples, which will inspire the readers with new ideas.
The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplinary studies to realize comfortable society. It is also helpful to those who carry out research and development regarding new products and services at companies. The author wrote this book hoping in particular that it provides the readers with meaningful hints to make good use of neural networks in fully practical applications. The book emphasizes basic ideas and ways of thinking. Why do we need to consider neural networks that deal with complex numbers? What advantages do the complex-valued neural networks have? What is the origin of the advantages? In what areas do they develop principal applications? This book answers these questions by describing details and examples, which will inspire the readers with new ideas.
目次
Complex-valued neural networks fertilize electronics.- Neural networks: The characteristic viewpoints.- Complex-valued neural networks: Distinctive features.- Constructions and dynamics of neural networks.- Land-surface classification with unevenness and reflectance taken into consideration.- Adaptive radar system to visualize antipersonnel plastic landmines.- Removal of phase singular points to create digital elevation map.- Lightwave associative memory that memorizes and recalls information depending on optical-carrier frequency.- Adaptive optical-phase equalizer.- Developmental learning with behavioral-mode tuning by carrier-frequency modulation.- Pitch-asynchronous overlap-add waveform-concatenation speech synthesis by optimizing phase spectrum in frequency domain.
「Nielsen BookData」 より