Monodromy and asymptotics of integrals
著者
書誌事項
Monodromy and asymptotics of integrals
(Modern Birkhäuser classics, Singularities of differentiable maps / V.I. Arnold,
Birkhäuser , Springer Science+Business Media, c2012
大学図書館所蔵 全9件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Originally published as Vol. 83 in the series monographs in mathematics"--T.p. verso
"Reprint of the 1988 edition"--T.p
内容説明・目次
内容説明
The present volume is the second in a two-volume set entitled Singularities of Differentiable Maps. While the first volume, subtitled Classification of Critical Points and originally published as Volume 82 in the Monographs in Mathematics series, contained the zoology of differentiable maps, that is, it was devoted to a description of what, where, and how singularities could be encountered, this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered are about the structure of singularities and how they function.
目次
Part I. The topological structure of isolated critical points of functions.- Introduction.- Elements of the theory of Picard-Lefschetz.- The topology of the non-singular level set and the variation operator of a singularity.- The bifurcation sets and the monodromy group of a singularity.- The intersection matrices of singularities of functions of two variables.- The intersection forms of boundary singularities and the topology of complete intersections.- Part II. Oscillatory integrals.- Discussion of results.- Elementary integrals and the resolution of singularities of the phase.- Asymptotics and Newton polyhedra.- The singular index, examples.- Part III. Integrals of holomorphic forms over vanishing cycles.- The simplest properties of the integrals.- Complex oscillatory integrals.- Integrals and differential equations.- The coefficients of series expansions of integrals, the weighted and Hodge filtrations and the spectrum of a critical point.- The mixed Hodge structure of an isolated critical point of a holomorphic function.- The period map and the intersection form.- References.- Subject Index.
「Nielsen BookData」 より