Glass-ceramic technology

著者

    • Höland, Wolfram
    • Beall, G. H.

書誌事項

Glass-ceramic technology

Wolfram Höland, George H. Beall

Wiley, c2012

2nd ed.

大学図書館所蔵 件 / 6

この図書・雑誌をさがす

注記

Copyright c2012 by The American ceramic society

Includes bibliographical references and index

内容説明・目次

内容説明

Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics.This new edition examines the various types of glass-ceramic materials, the methods of their development, and their countless applications. With expanded sections on biomaterials and highly bioactive products (i.e., Bioglass and related glass ceramics), as well as the newest mechanisms for the development of dental ceramics and theories on the development of nano-scaled glass-ceramics, here is a must-have guide for ceramic and materials engineers, managers, and designers in the ceramic and glass industry.

目次

INTRODUCTION TO THE SECOND EDITION XI INTRODUCTION TO THE FIRST EDITION XIII HISTORY XVII CHAPTER 1 PRINCIPLES OF DESIGNING GLASS-CERAMIC FORMATION 1 1.1 Advantages of Glass-Ceramic Formation 1 1.1.1 Processing Properties 2 1.1.2 Thermal Properties 3 1.1.3 Optical Properties 3 1.1.4 Chemical Properties 3 1.1.5 Biological Properties 3 1.1.6 Mechanical Properties 3 1.1.7 Electrical and Magnetic Properties 4 1.2 Factors of Design 4 1.3 Crystal Structures and Mineral Properties 5 1.3.1 Crystalline Silicates 5 1.3.1.1 Nesosilicates 6 1.3.1.2 Sorosilicates 7 1.3.1.3 Cyclosilicates 7 1.3.1.4 Inosilicates 7 1.3.1.5 Phyllosilicates 8 1.3.1.6 Tectosilicates 8 1.3.2 Phosphates 32 1.3.2.1 Apatite 32 1.3.2.2 Orthophosphates and Diphosphates 34 1.3.2.3 Metaphosphates 36 1.3.3 Oxides 37 1.3.3.1 TiO2 37 1.3.3.2 ZrO2 38 1.3.3.3 MgAl2O4 (Spinel) 39 1.4 Nucleation 39 1.4.1 Homogeneous Nucleation 42 1.4.2 Heterogeneous Nucleation 43 1.4.3 Kinetics of Homogeneous and Heterogeneous Nucleation 45 1.4.4 Examples for Applying the Nucleation Theory in the Development of Glass-Ceramics 48 1.4.4.1 Volume Nucleation 49 1.4.4.2 Surface Nucleation 54 1.4.4.3 Time Temperature Transformation Diagrams 57 1.5 Crystal Growth 59 1.5.1 Primary Growth 60 1.5.2 Anisotropic Growth 62 1.5.3 Surface Growth 68 1.5.4 Dendritic and Spherulitic Crystallization 70 1.5.4.1 Phenomenology 70 1.5.4.2 Dendritic and Spherulitic Crystallization Application 72 1.5.5 Secondary Grain Growth 72 CHAPTER 2 COMPOSITION SYSTEMS FOR GLASS-CERAMICS 75 2.1 Alkaline and Alkaline Earth Silicates 75 2.1.1 SiO2 Li2O (Lithium Disilicate) 75 2.1.1.1 Stoichiometric Composition 75 2.1.1.2 Nonstoichiometric Multicomponent Compositions 77 2.1.2 SiO2 BaO (Sanbornite) 88 2.1.2.1 Stoichiometric Barium-Disilicate 88 2.1.2.2 Multicomponent Glass-Ceramics 89 2.2 Aluminosilicates 90 2.2.1 SiO2 Al2O3 (Mullite) 90 2.2.2 SiO2 Al2O3 Li2O ( -Quartz Solid Solution, -Spodumene Solid Solution) 92 2.2.2.1 -Quartz Solid Solution Glass-Ceramics 93 2.2.2.2 -Spodumene Solid-Solution Glass-Ceramics 97 2.2.3 SiO2 Al2O2 Na2O (Nepheline) 99 2.2.4 SiO2 Al2O3 Cs2O (Pollucite) 102 2.2.5 SiO2 Al2O3 MgO (Cordierite, Enstatite, Forsterite) 105 2.2.5.1 Cordierite Glass-Ceramics 105 2.2.5.2 Enstatite Glass-Ceramics 110 2.2.5.3 Forsterite Glass-Ceramics 112 2.2.6 SiO2 Al2O3 CaO (Wollastonite) 114 2.2.7 SiO2 Al2O3 ZnO (Zn-Stuffed -Quartz, Willemite-Zincite) 116 2.2.7.1 Zinc-Stuffed -Quartz Glass-Ceramics 116 2.2.7.2 Willemite and Zincite Glass-Ceramics 119 2.2.8 SiO2 Al2O3 ZnO MgO (Spinel, Gahnite) 120 2.2.8.1 Spinel Glass-Ceramic Without -Quartz 120 2.2.8.2 -Quartz-Spinel Glass-Ceramics 122 2.2.9 SiO2 Al2O3 CaO (Slag Sital) 123 2.2.10 SiO2 Al2O3 K2O (Leucite) 126 2.2.11 SiO2 Ga2O3 Al2O3 Li2O Na2O K2O (Li Al Gallate Spinel) 130 2.2.12 SiO2 Al2O3 SrO BaO (Sr Feldspar Celsian) 131 2.3 Fluorosilicates 135 2.3.1 SiO2 (R3+)2O3 MgO (R2+)O (R+)2O F (Mica) 135 2.3.1.1 Alkaline Phlogopite Glass-Ceramics 135 2.3.1.2 Alkali-Free Phlogopite Glass-Ceramics 141 2.3.1.3 Tetrasilicic Mica Glass-Ceramic 142 2.3.2 SiO2 Al2O3 MgO CaO ZrO2 F (Mica, Zirconia) 143 2.3.3 SiO2 CaO R2O F (Canasite) 145 2.3.4 SiO2 MgO CaO (R+)2O F (Amphibole) 151 2.4 Silicophosphates 155 2.4.1 SiO2 CaO Na2O P2O5 (Apatite) 155 2.4.2 SiO2 MgO CaO P2O5 F (Apatite, Wollastonite) 157 2.4.3 SiO2 MgO Na2O K2O CaO P2O5 (Apatite) 157 2.4.4 SiO2 Al2O3 MgO CaO Na2O K2O P2O5 F (Mica, Apatite) 159 2.4.5 SiO2 MgO CaO TiO2 P2O5 (Apatite, Magnesium Titanate) 164 2.4.6 SiO2 Al2O3 CaO Na2O K2O P2O5 F (Needlelike Apatite) 165 2.4.6.1 Formation of Needlelike Apatite as a Parallel Reaction to Rhenanite 169 2.4.6.2 Formation of Needlelike Apatite from Disordered Spherical Fluoroapatite 173 2.4.7 SiO2 Al2O3 CaO Na2O K2O P2O5 F/Y2O3, B2O3 (Apatite and Leucite) 173 2.4.7.1 Fluoroapatite and Leucite 175 2.4.7.2 Oxyapatite and Leucite 177 2.4.8 SiO2 CaO Na2O P2O5 F (Rhenanite) 179 2.5 Iron Silicates 182 2.5.1 SiO2 Fe2O3 CaO 182 2.5.2 SiO2 Al2O3 FeO Fe2O3 K2O (Mica, Ferrite) 182 2.5.3 SiO2 Al2O3 Fe2O3 (R+)2O (R2+)O (Basalt) 185 2.6 Phosphates 187 2.6.1 P2O5 CaO (Metaphosphates) 187 2.6.2 P2O5 CaO TiO2 191 2.6.3 P2O5 Na2O BaO and P2O5 TiO2 WO3 191 2.6.3.1 P2O5 Na2O BaO System 191 2.6.3.2 P2O5 TiO2 WO3 System 192 2.6.4 P2O5 Al2O3 CaO (Apatite) 192 2.6.5 P2O5 B2O3 SiO2 194 2.6.6 P2O5 SiO2 Li2O ZrO2 196 2.6.6.1 Glass-Ceramics Containing 16 wt% ZrO2 197 2.6.6.2 Glass-Ceramics Containing 20 wt% ZrO2 197 2.7 Other Systems 199 2.7.1 Perovskite-Type Glass-Ceramics 199 2.7.1.1 SiO2 Nb2O5 Na2O (BaO) 199 2.7.1.2 SiO2 Al2O3 TiO2 PbO 201 2.7.1.3 SiO2 Al2O3 K2O Ta2O5 Nb2O5 203 2.7.2 Ilmenite-Type (SiO2 Al2O3 Li2O Ta2O5) Glass-Ceramics 204 2.7.3 B2O3 BaFe12O19 (Barium Hexaferrite) or (BaFe10O15) Barium Ferrite 204 2.7.4 SiO2 Al2O3 BaO TiO2 (Barium Titanate) 205 2.7.5 Bi2O3 SrO CaO CuO 206 CHAPTER 3 MICROSTRUCTURE CONTROL 207 3.1 Solid-State Reactions 207 3.1.1 Isochemical Phase Transformation 207 3.1.2 Reactions between Phases 208 3.1.3 Exsolution 208 3.1.4 Use of Phase Diagrams to Predict Glass-Ceramic Assemblages 209 3.2 Microstructure Design 209 3.2.1 Nanocrystalline Microstructures 210 3.2.2 Cellular Membrane Microstructures 211 3.2.3 Coast-and-Island Microstructure 214 3.2.4 Dendritic Microstructures 216 3.2.5 Relict Microstructures 218 3.2.6 House-of-Cards Microstructures 219 3.2.6.1 Nucleation Reactions 221 3.2.6.2 Primary Crystal Formation and Mica Precipitation 221 3.2.7 Cabbage-Head Microstructures 222 3.2.8 Acicular Interlocking Microstructures 228 3.2.9 Lamellar Twinned Microstructures 231 3.2.10 Preferred Crystal Orientation 232 3.2.11 Crystal Network Microstructures 235 3.2.12 Nature as an Example 236 3.2.13 Nanocrystals 237 3.3 Control of Key Properties 239 3.4 Methods and Measurements 240 3.4.1 Chemical System and Crystalline Phases 240 3.4.2 Determination of Crystal Phases 240 3.4.3 Kinetic Process of Crystal Formation 242 3.4.4 Determination of Microstructure 246 3.4.5 Mechanical, Optical, Electrical, Chemical, and Biological Properties 247 3.4.5.1 Optical Properties and Chemical Composition of Glass-Ceramics 248 3.4.5.2 Mechanical Properties and Microstructures of Glass-Ceramics 249 3.4.5.3 Electrical Properties 249 3.4.5.4 Chemical Properties 250 3.4.5.5 Biological Properties 250 CHAPTER 4 APPLICATIONS OF GLASS-CERAMICS 252 4.1 Technical Applications 252 4.1.1 Radomes 252 4.1.2 Photosensitive and Etched Patterned Materials 252 4.1.2.1 Fotoform(R) and Fotoceram(R) 253 4.1.2.2 Foturan(R) 254 4.1.2.3 Additional Products 259 4.1.3 Machinable Glass-Ceramics 260 4.1.3.1 MACOR(R) and DICOR(R) 260 4.1.3.2 Vitronit 264 4.1.3.3 Photoveel 264 4.1.4 Magnetic Memory Disk Substrates 265 4.1.5 Liquid Crystal Displays 269 4.2 Consumer Applications 269 4.2.1 -Spodumene Solid-Solution Glass-Ceramic 269 4.2.2 -Quartz Solid-Solution Glass-Ceramic 271 4.3 Optical Applications 277 4.3.1 Telescope Mirrors 277 4.3.1.1 Requirements for Their Development 277 4.3.1.2 Zerodur(R) Glass-Ceramics 277 4.3.2 Integrated Lens Arrays 279 4.3.3 Applications for Luminescent Glass-Ceramics 281 4.3.3.1 Cr-Doped Mullite for Solar Concentrators 281 4.3.3.2 Cr-Doped Gahnite Spinel for Tunable Lasers and Optical Memory Media 285 4.3.3.3 Rare-Earth Doped Oxyfluorides for Amplification, Upconversion, and Quantum Cutting 288 4.3.3.4 Chromium (Cr4+)-Doped Forsterite, -Willemite, and Other Orthosilicates for Broad Wavelength Amplification 293 4.3.3.5 Ni2+-Doped Gallate Spinel for Amplification and Broadband Infrared Sources 297 4.3.3.6 YAG Glass-Ceramic Phosphor for White LED 301 4.3.4 Optical Components 301 4.3.4.1 Glass-Ceramics for Fiber Bragg Grating Athermalization 301 4.3.4.2 Laser-Induced Crystallization for Optical Gratings and Waveguides 309 4.3.4.3 Glass-Ceramic Ferrule for Optical Connectors 310 4.3.4.4 Applications for Transparent ZnO Glass-Ceramics with Controlled Infrared Absorbance and Microwave Susceptibility 310 4.4 Medical and Dental Glass-Ceramics 311 4.4.1 Glass-Ceramics for Medical Applications 312 4.4.1.1 CERABONE(R) 312 4.4.1.2 CERAVITAL(R) 314 4.4.1.3 BIOVERIT(R) 314 4.4.2 Glass-Ceramics for Dental Restoration 315 4.4.2.1 Moldable Glass-Ceramics for Metal-Free Restorations 317 4.4.2.2 Machinable Glass-Ceramics for Metal-Free Restorations 327 4.4.2.3 Glass-Ceramics on Metal Frameworks 330 4.4.2.4 Glass-Ceramic Veneering Materials on High Toughness Polycrystalline Ceramics 335 4.5 Electrical and Electronic Applications 342 4.5.1 Insulators 342 4.5.2 Electronic Packaging 344 4.5.2.1 Requirements for Their Development 344 4.5.2.2 Properties and Processing 344 4.5.2.3 Applications 346 4.6 Architectural Applications 346 4.7 Coatings and Solders 350 4.8 Glass-Ceramics for Energy Applications 351 4.8.1 Components for Lithium Batteries 351 4.8.1.1 Cathodes 351 4.8.1.2 Electrolytes 351 4.8.2 Joining Materials for Solid Oxide Fuel Cell Components 352 EPILOGUE: FUTURE DIRECTIONS 354 APPENDIX: TWENTY-ONE FIGURES OF 23 CRYSTAL STRUCTURES 355 REFERENCES 378 INDEX 407

「Nielsen BookData」 より

詳細情報

ページトップへ