書誌事項

Fusion plasma physics

Weston M. Stacey

(Physics textbook)

Wiley-VCH, c2012

2nd ed., revised and enlarged ed

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

Originally published: 2005

Includes bibliographical references (p. [629]-631) and index

内容説明・目次

内容説明

This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. -- are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.

目次

1 Basic Physics 1 1.1 Fusion 1 1.2 Plasma 7 1.3 Coulomb Collisions 10 1.4 Electromagnetic Theory 17 2 Motion of Charged Particles 23 2.1 Gyromotion and Drifts 23 2.1.1 Gyromotion 23 2.1.2 E B Drift 26 2.1.3 Grad-B Drift 27 2.1.4 Polarization Drift 29 2.1.5 Curvature Drift 30 2.2 Constants of the Motion 33 2.2.1 Magnetic Moment 33 2.2.2 Second Adiabatic Invariant* 34 2.2.3 Canonical Angular Momentum 36 2.3 Diamagnetism* 38 3 Magnetic Confinement 43 3.1 Confinement in Mirror Fields 43 3.1.1 Simple Mirror 43 3.1.2 Tandem Mirrors* 48 3.2 Closed Toroidal Confinement Systems 51 3.2.1 Confinement 51 3.2.2 Flux Surfaces 55 3.2.3 Trapped Particles 57 3.2.4 Transport Losses 61 4 Kinetic Theory 67 4.1 Boltzmann and Vlasov Equations 68 4.2 Drift Kinetic Approximation 68 4.3 Fokker-Planck Theory of Collisions 71 4.4 Plasma Resistivity 78 4.5 Coulomb Collisional Energy Transfer 80 4.6 Krook Collision Operators* 84 5 Fluid Theory 87 5.1 Moments Equations 87 5.2 One-Fluid Model 91 5.3 Magneto hydrodynamic Model 95 5.4 Anisotropic Pressure Tensor Model* 98 5.5 Strong Field, Transport Time Scale Ordering 100 6 Plasma Equilibria 105 6.1 General Properties 105 6.2 Axisymmetric Toroidal Equilibria 107 6.3 Large Aspect Ratio Tokamak Equilibria 113 6.4 Safety Factor 119 6.5 Shafranov Shift* 122 6.6 Beta* 125 6.7 Magnetic Field Diffusion and Flux Surface Evolution* 127 6.8 Anisotropic Pressure Equilibria* 130 6.9 Elongated Equilibria* 132 6.9.1 Geometry 132 6.9.2 Flux surface average 134 6.9.3 Equivalent toroidal models 134 6.9.4 Interpretation of thermal diffusivities from measured temperature gradients 136 6.9.5 Prediction of poloidal distribution of conductive heat flux 137 6.9.6 Mapping radial gradients to different poloidal locations 138 7 Waves 141 7.1 Waves in an Unmagnetized Plasma 141 7.1.1 Electromagnetic Waves 141 7.1.2 Ion Sound Waves 143 7.2 Waves in a Uniformly Magnetized Plasma 144 7.2.1 Electromagnetic Waves 144 7.2.2 Shear Alfven Wave 147 7.3 Langmuir Waves and Landau Damping 149 7.4 Vlasov Theory of Plasma Waves* 152 7.5 Electrostatic Waves* 158 8 Instabilities 165 8.1 Hydromagnetic Instabilities 168 8.1.1 MHD Theory 169 8.1.2 Chew-Goldberger-Low Theory 170 8.1.3 Guiding Center Theory 172 8.2 Energy Principle 175 8.3 Pinch and Kink Instabilities 179 8.4 Interchange (Flute) Instabilities 183 8.5 Ballooning Instabilities 189 8.6 Drift Wave Instabilities 193 8.7 Resistive Tearing Instabilities* 196 8.7.1 Slab Model 196 8.7.2 MHD Regions 197 8.7.3 Resistive Layer 199 8.7.4 Magnetic Islands 200 8.8 Kinetic Instabilities* 202 8.8.1 Electrostatic Instabilities 202 8.8.2 Collisionless Drift Waves 203 8.8.3 Electron Temperature Gradient Instabilities 205 8.8.4 Ion Temperature Gradient Instabilities 206 8.8.5 Loss-Cone and Drift-Cone Instabilities 207 8.9 Sawtooth Oscillations* 211 9 Neoclassical Transport 215 9.1 Collisional Transport Mechanisms 215 9.1.1 Particle Fluxes 215 9.1.2 Heat Fluxes 217 9.1.3 Momentum Fluxes 218 9.1.4 Friction Force 220 9.1.5 Thermal Force 220 9.2 Classical Transport 222 9.3 Neoclassical Transport - Toroidal Effects in Fluid Theory 225 9.4 Multifluid Transport Formalism* 231 9.5 Closure of Fluid Transport Equations* 234 9.5.1 Kinetic Equations for Ion-Electron Plasma 234 9.5.2 Transport Parameters 238 9.6 Neoclassical Transport-Trapped Particles 241 9.7 Extended Neoclassical Transport-Fluid Theory* 247 9.7.1 Radial Electric Field 248 9.7.2 Toroidal Rotation 249 9.7.3 Transport Fluxes 249 9.8 Electrical Currents 251 9.8.1 Bootstrap Current 251 9.8.2 Total Current 252 9.9 Orbit Distortion* 253 9.9.1 Toroidal Electric Field-Ware Pinch 253 9.9.2 Potato Orbits 254 9.9.3 Orbit Squeezing 255 9.10 Neoclassical Ion Thermal Diffusivity 256 9.11 Paleo classical Electron Thermal Diffusivity 258 9.12 Transport in a Partially Ionized Gas* 259 10 Plasma Rotation* 263 10.1 Neoclassical Viscosity 263 10.1.1 Rate-of-Strain Tensor in Toroidal Geometry 263 10.1.2 Viscous Stress Tensor 264 10.1.3 Toroidal Viscous Force 265 10.1.4 Parallel Viscous Force 269 10.1.5 Neoclassical Viscosity Coefficients 270 10.2 Rotation Calculations 272 10.2.1 Poloidal Rotation and Density Asymmetries 272 10.2.2 Shaing-Sigmar-Stacey Parallel Viscosity Model 275 10.2.3 Stacey-Sigmar Poloidal Rotation Model 276 10.2.4 Radial Electric Field and Toroidal Rotation Velocities 280 10.3 Momentum Confinement Times 281 10.3.1 Theoretical 281 10.3.2 Experimental 282 10.4 Rotation and Transport in Elongated Geometry 283 10.4.1 Flux surface coordinate system 283 10.4.2 Flux surface average 285 10.4.3 Differential Operators in Generalized Geometry 285 10.4.4 Fluid Equations in Miller Elongated Flux Surface Coordinates 286 11 Turbulent Transport 293 11.1 Electrostatic Drift Waves 293 11.1.1 General 293 11.1.2 Ion Temperature Gradient Drift Waves 296 11.1.3 Quasilinear Transport Analysis 296 11.1.4 Saturated Fluctuation Levels 298 11.2 Magnetic Fluctuations 299 11.3 Wave-Wave Interactions* 301 11.3.1 Mode Coupling 301 11.3.2 Direct Interaction Approximation 302 11.4 Drift Wave Eigen modes* 304 11.5 Micro instability thermal diffusivity models* 306 11.5.1 Ion transport 307 11.5.2 Electron transport 312 11.6 Gyrokinetic and Gyrofluid Theory* 315 11.6.1 Gyrokinetic Theory of Turbulent Transport 316 11.6.2 Gyrofluid Theory of Turbulent Transport 318 11.7 Zonal Flows* 321 12 Heating and Current Drive 323 12.1 Inductive 323 12.2 Adiabatic Compression* 326 12.3 Fast Ions 329 12.3.1 Neutral Beam Injection 329 12.3.2 Fast Ion Energy Loss 331 12.3.3 Fast Ion Distribution* 334 12.3.4 Neutral Beam Current Drive 336 12.3.5 Toroidal Alfven Instabilities 337 12.4 Electromagnetic Waves 339 12.4.1 Wave Propagation 339 12.4.2 Wave Heating Physics 342 12.4.3 Ion Cyclotron Resonance Heating 346 12.4.4 Lower Hybrid Resonance Heating 347 12.4.5 Electron Cyclotron Resonance Heating 348 12.4.6 Current Drive 349 13 Plasma-Material Interaction 355 13.1 Sheath 355 13.2 Recycling 358 13.3 Atomic and Molecular Processes 359 13.4 Penetration of Recycling Neutrals 364 13.5 Sputtering 365 13.6 Impurity Radiation 367 14 Divertors 373 14.1 Configuration, Nomenclature and Physical Processes 373 14.2 Simple Divertor Model 376 14.2.1 Strip Geometry 376 14.2.2 Radial Transport and Widths 376 14.2.3 Parallel Transport 378 14.2.4 Solution of Plasma Equations 379 14.2.5 Two-Point Model 380 14.3 Divertor Operating Regimes* 382 14.3.1 Sheath-Limited Regime 382 14.3.2 Detached Regime 383 14.3.3 High Recycling Regime 383 14.3.4 Parameter Scaling 384 14.3.5 Experimental Results 385 14.4 Impurity Retention 385 14.5 Thermal Instability* 388 14.6 2DFluidPlasmaCalculation* 391 14.7 Drifts 393 14.7.1 Basic Drifts in the SOL and Divertor 393 14.7.2 Poloidal and Radial E B Drifts 394 14.8 Thermoelectric Currents 396 14.8.1 Simple Current Model 396 14.8.2 Relaxation of Simplifying Assumptions 398 14.9 Detachment 400 14.10 Effect of Drifts on Divertor and SOL Plasma Properties* 402 14.10.1 Geometric Model 402 14.10.2 Radial Transport 403 14.10.3 Temperature, Density and Velocity Distributions 404 14.10.4 Electrostatic Potential 406 14.10.5 Parallel Current 407 14.10.6 Grad-B and Curvature Drifts 408 14.10.7 Solution for Currents and Potentials at Divertor Plates 410 14.10.8 E B Drifts 411 14.10.9 Total Parallel Ion Flux 413 14.10.10 Impurities 413 14.10.11GeometricInvariance 415 14.10.12 Model Problem Calculation: Effect of B Direction on SOL-Divertor Parameters 416 14.11 Blob Transport* 422 15 Plasma Edge 425 15.1 H-Mode Edge Plasma 425 15.2 Transport in the Plasma Edge 426 15.2.1 Fluid Theory 426 15.2.2 Multi-Fluid Theory* 430 15.2.3 Torque Representation* 431 15.2.4 Kinetic Corrections for Non-Diffusive Ion Transport 433 15.3 Differences Between L-Mode and H-Mode Plasma Edges 439 15.4 Effect of Recycling Neutrals 443 15.5 E B Shear Stabilization of Turbulence 444 15.5.1 E B Shear Stabilization Physics 445 15.5.2 Comparison with Experiment 447 15.5.3 Possible "Trigger" Mechanism for the L-H Transition 448 15.6 Thermal Instabilities 449 15.6.1 Temperature Perturbations in the Plasma Edge 449 15.6.2 Coupled Two-Dimensional Density-Velocity-Temperature Perturbations* 453 15.6.3 Spontaneous Edge Pressure Pedestal Formation 458 15.7 Poloidal Velocity Spin-Up* 461 15.7.1 Neoclassical Spin-Up 463 15.7.2 Fluid Momentum Balance Calculation of Poloidal Velocity Spin-Up 463 15.7.3 Poloidal Velocity Spin-Up Due to Poloidal Asymmetries 464 15.7.4 Bifurcation of the Poloidal Velocity Spin-Up 466 15.8 ELM Stability Limits on Edge Pressure Gradients 467 15.8.1 MHD Instability Theory of Peeling Modes* 468 15.8.2 MHD Instability Theory of Coupled Ballooning-Peeling Modes* 470 15.8.3 MHD Instability Analysis of ELMs 472 15.9 MARFEs 476 15.10 Radiative Mantle 480 15.11 Edge Operation Boundaries 482 16 Neutral Particle Transport 485 16.1 Fundamentals* 485 16.1.1 1DBoltzmannTransportEquation 485 16.1.2 Legendre Polynomials 486 16.1.3 Charge Exchange Model 487 16.1.4 Elastic Scattering Model 488 16.1.5 Recombination Model 491 16.1.6 First Collision Source 491 16.2 P N Transport and Diffusion Theory* 493 16.2.1 P N Equations 493 16.2.2 Extended Diffusion Theories 496 16.3 Multidimensional Neutral Transport* 500 16.3.1 Formulation of Transport Equation 500 16.3.2 Boundary Conditions 502 16.3.3 Scalar Flux and Current 502 16.3.4 Partial Currents 504 16.4 Integral Transport Theory* 504 16.4.1 Isotropic Point Source 505 16.4.2 Isotropic Plane Source 506 16.4.3 Anisotropic Plane Source 507 16.4.4 Transmission Probabilities 509 16.4.5 Escape Probabilities 509 16.4.6 Inclusion of Isotropic Scattering and Charge Exchange 510 16.4.7 Distributed Volumetric Sources in Arbitrary Geometry 511 16.4.8 Flux from a Line Isotropic Source 511 16.4.9 Bickley Functions 512 16.4.10 Probability of Traveling a Distance t from a Line, Isotropic Source without a Collision 513 16.5 Collision Probability Methods* 514 16.5.1 Reciprocity among Transmission and Collision Probabilities 514 16.5.2 Collision Probabilities for Slab Geometry 515 16.5.3 Collision Probabilities in Two-Dimensional Geometry 515 16.6 Interface Current Balance Methods 517 16.6.1 Formulation 517 16.6.2 Transmission and Escape Probabilities 517 16.6.3 2D Transmission/Escape Probabilities (TEP) Method 519 16.6.4 1DSlabMethod 524 16.7 Extended Transmission-Escape Probabilities Method* 525 16.7.1 Basic TEP Method 525 16.7.2 Anisotropic Angular Fluxes 526 16.7.3 Extended Directional Escape Probabilities 528 16.7.4 Average Neutral Energy Approximation 531 16.8 Discrete Ordinates Methods* 533 16.8.1 P L and D-P L Ordinates 534 16.9 Monte Carlo Methods* 536 16.9.1 Probability Distribution Functions 537 16.9.2 Analog Simulation of Neutral Particle Transport 537 16.9.3 Statistical Estimation 539 16.10 Navier-Stokes Fluid Model* 541 16.11 Tokamak Plasma Refueling by Neutral Atom Recycling 542 17 Power Balance 549 17.1 Energy Confinement Time 549 17.1.1 Definition 549 17.1.2 Experimental Energy Confinement Times 550 17.1.3 Empirical Correlations 551 17.2 Radiation 554 17.2.1 Radiation Fields 554 17.2.2 Bremsstrahlung 556 17.2.3 Cyclotron Radiation 557 17.3 Impurities 559 17.4 Burning Plasma Dynamics 561 18 Operational Limits 565 18.1 Disruptions 565 18.1.1 Physics of Disruptions 565 18.1.2 Causes of Disruptions 567 18.2 Disruption Density Limit 567 18.2.1 Radial Temperature Instabilities 569 18.2.2 Spatial Averaging* 571 18.2.3 Coupled Radial Temperature-Density Instabilities* 573 18.3 Nondisruptive Density Limits 576 18.3.1 MARFEs 576 18.3.2 Confinement Degradation 577 18.3.3 Thermal Collapse of Divertor Plasma 580 18.4 Empirical Density Limit 581 18.5 MHD Instability Limits 581 18.5.1 -Limits 581 18.5.2 Kink Mode Limits on q(a)/q(0) 584 19 Fusion Reactors and Neutron Sources 587 19.1 Plasma Physics and Engineering Constraints 587 19.1.1 Confinement 587 19.1.2 Density Limit 588 19.1.3 Beta Limit 589 19.1.4 Kink Stability Limit 590 19.1.5 Start-Up Inductive Volt-Seconds 590 19.1.6 Noninductive Current Drive 591 19.1.7 Bootstrap Current 592 19.1.8 Toroidal Field Magnets 592 19.1.9 Blanket and Shield 593 19.1.10 Plasma Facing Component Heat Fluxes 593 19.1.11 Radiation Damage to Plasma Facing Components 596 19.2 International Tokamak Program 597 19.3 Fusion Beyond ITER 600 19.4 Fusion-Fission Hybrids? 603 Appendices A Frequently Used Physical Constants 611 B Dimensions and Units 613 C Vector Calculus 617 D Curvilinear Coordinates 619 E Plasma Formulas 627 F Further Reading 629 G Attributions 633 Subject Index 641

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ