Extended graphical calculus for categorified quantum sl(2)
Author(s)
Bibliographic Information
Extended graphical calculus for categorified quantum sl(2)
(Memoirs of the American Mathematical Society, no. 1029)
American Mathematical Society, c2012
Available at 12 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"September 2012, volume 219, number 1029 (second of 5 numbers)."
Includes bibliographical references (p.85-87)
Description and Table of Contents
Description
A categorification of the Beilinson-Lusztig-MacPherson form of the quantum sl(2) was constructed in a paper (arXiv:0803.3652) by Aaron D. Lauda. Here the authors enhance the graphical calculus introduced and developed in that paper to include two-morphisms between divided powers one-morphisms and their compositions. They obtain explicit diagrammatical formulas for the decomposition of products of divided powers one-morphisms as direct sums of indecomposable one-morphisms; the latter are in a bijection with the Lusztig canonical basis elements.
These formulas have integral coefficients and imply that one of the main results of Lauda's paper--identification of the Grothendieck ring of his 2-category with the idempotented quantum sl(2)--also holds when the 2-category is defined over the ring of integers rather than over a field. A new diagrammatic description of Schur functions is also given and it is shown that the the Jacobi-Trudy formulas for the decomposition of Schur functions into elementary or complete symmetric functions follows from the diagrammatic relations for categorified quantum sl(2).
by "Nielsen BookData"