Energy scalable radio design : for pulsed UWB communication and ranging
著者
書誌事項
Energy scalable radio design : for pulsed UWB communication and ranging
(Analog circuits and signal processing series / consulting editor, Mohammed Ismail)
Springer, 2009
- : softcover
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Softcover reprint of the hardcover 1st edition 2009"--T.p. verso of softcover
Includes bibliographical references (p. 221-239) and index
内容説明・目次
内容説明
Smart energy management, both at design time and at run time, is indispensable in modern radios. It requires a careful trade-off between the system's performance, and its power consumption. Moreover, the design has to be dynamically reconfigurable to optimally balance these parameters at run time, depending on the current operating conditions.
Energy Scalable Radio Design describes and applies an energy-driven design strategy to the design of an energy-efficient, highly scalable, pulsed UWB receiver, suitable for low data rate communication and sub-cm ranging. This book meticulously covers the different design steps and the adopted optimizations: System level air interface selection, architectural/algorithmic design space exploration, algorithmic refinement (acquisition, synchronization and ranging algorithms) and circuit level (RTL) implementation based on the FLEXmodule-concept. Measurement results demonstrate the effectiveness and necessity of the energy-driven design strategy.
目次
Preface. 1 Introduction and motivation. 1.1 Dreaming of a smart environment. 1.2 Limited energy resources and the energy gap. 1.3 Strategies to bridge the energy gap. 1.4 Book scope and organizational overview. 2 Adaptation of classical design flow for energy-driven system-to-circuit design. 2.1 Introduction. 2.2 Classical (digital) top-down design flow: Gajski-Kuhn. 2.3 Need for energy-driven cross-layer scalable system-to-circuit design. 2.4 Proposed adaptations of the classical design flow. 2.5 Conclusion. 3 System level specifications and design. 3.1 Introduction. 3.2 System specifications. 3.3 Selection of the air interface. 3.4 Conclusion. 4 Algorithmic/architectural design space exploration. 4.1 Introduction. 4.2 UWB communication and receiver framework. 4.3 Receiver alternatives. 4.4 Receiver comparison: power, performance, EPUB. 4.5 Algorithmic/architectural DSE summary. 4.6 Further considerations. 4.7 Conclusion. 5 Algorithmic/architectural level refinement. 5.1 Introduction. 5.2 Algorithm refinement. 5.3 Architecture refinement. 5.4 Conclusion. 6 Digital RT level design: flexibility to save energy. 6.1 Introduction. 6.2 Design based on nested FLEXmodules. 6.3 Measuring and weighing flexibility. 6.4 Energy-optimal design through flexibility. 6.5 Intermediate conclusion on the flexibility-power-performance trade-off. 6.6 Detailed back-end architecture and design. 6.7 Conclusion. 7 Chip and system measurements. 7.1 Introduction. 7.2 Back-end measurements. 7.3 System measurements: 3-5 GHz band. 7.4 System measurements: 0-960 MHz band. 7.5 Receiver comparison. 7.6 Conclusion. 8 Conclusions. Bibliography. Index.
「Nielsen BookData」 より