Integration of world knowledge for natural language understanding

著者

    • Ovchinnikova, Ekaterina

書誌事項

Integration of world knowledge for natural language understanding

Ekaterina Ovchinnikova

(Atlantis thinking machines / sereis editor, Kai-Uwe Kühnberger, v. 3)

Atlantis, c2012

  • : hardback
  • : softcover

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

注記

"Softcover reprint of the hardcover 1st edition 2012"--T.p. verso of softcover

Includes bibliographical references (p. 225-239) and index

内容説明・目次

内容説明

This book concerns non-linguistic knowledge required to perform computational natural language understanding (NLU). The main objective of the book is to show that inference-based NLU has the potential for practical large scale applications. First, an introduction to research areas relevant for NLU is given. We review approaches to linguistic meaning, explore knowledge resources, describe semantic parsers, and compare two main forms of inference: deduction and abduction. In the main part of the book, we propose an integrative knowledge base combining lexical-semantic, ontological, and distributional knowledge. A particular attention is payed to ensuring its consistency. We then design a reasoning procedure able to make use of the large scale knowledge base. We experiment both with a deduction-based NLU system and with an abductive reasoner. For evaluation, we use three different NLU tasks: recognizing textual entailment, semantic role labeling, and interpretation of noun dependencies.

目次

Preliminaries.- Natural Language Understanding and World Knowledge.- Sources of World Knowledge.- Reasoning for Natural Language Understanding.- Knowledge Base Construction.- Ensuring Consistency.- Abductive Reasoning with the Integrative Knowledge Base.- Evaluation.- Conclusion.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB1062202X
  • ISBN
    • 9789491216527
    • 9789462390393
  • 出版国コード
    ne
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Amsterdam
  • ページ数/冊数
    xvii, 242 p.
  • 大きさ
    25 cm
  • 分類
  • 親書誌ID
ページトップへ