Refinery engineering : integrated process modeling and optimization

著者

    • Chang, Ai-Fu
    • Pashikanti, Kiran
    • Liu, Y. A. (Yih An)

書誌事項

Refinery engineering : integrated process modeling and optimization

Ai-Fu Chang, Kiran Pashikanti, and Y.A. Liu

Wiley-VCH, c2012

  • pbk.

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

A pioneering and comprehensive introduction to the complex subject of integrated refinery process simulation, using many of the tools and techniques currently employed in modern refineries. Adopting a systematic and practical approach, the authors include the theory, case studies and hands-on workshops, explaining how to work with real data. As a result, senior-level undergraduate and graduate students, as well as industrial engineers learn how to develop and use the latest computer models for the predictive modeling and optimization of integrated refinery processes. Additional material is available online providing relevant spreadsheets and simulation files for all the models and examples presented in the book.

目次

PREFACE CHARACTERIZATION, PHYSICAL AND THERMODYNAMIC PROPERTIES OF OIL FRACTIONS Crude Assay Pseudocomponent Generation Based on Boiling-Point Ranges Workshop 1.1 - Interconvert Distillation Curves Workshop 1.2 - Extrapolate an Incomplete Distillation Curve Workshop 1.3 - Calculate MeABP of a Given Assay Workshop 1.4 - Duplicate the Oil Fraction in Aspen HYSYS/Refining Property Requirements for Refinery Process Models Physical Properties Process Thermodynamics Miscellaneous Physical Properties for Refinery Modeling Conclusions Nomenclature References ATMOSPHERIC DISTILLATION UNIT Introduction Scope of the Chapter Process Overview Model Development Feed Characterization Data Requirements and Validation Representative Atmospheric Distillation Unit Building the Model in Aspen HYSYS Results Model Applications to Process Optimization Workshop 2.1 - Rebuild Model Using "Backblending" Procedure Workshop 2.2 - Investigate Changes in Product Profiles with New Product Demands Conclusions Nomenclature References VACUUM DISTILLATION UNIT Process Description Data Reconciliation Model Implementation Model Applications toProcess Optimization - VDU Deep-Cut Operation Workshop - Using Aspen HYSYS/Refining to Implement Deep-Cut Operation References PREDICTIVE MODELING OF THE FLUID CATALYTIC CRACKING (FCC) PROCESS Introduction Process Description Process Chemistry Literature Review Aspen HYSYS/Petroleum Refining FCC Model Calibrating the Aspen HYSYS/Petroleum Refining FCC Model Fractionation Mapping Feed Information to Kinetic Lumps Overall Modeling Strategy Results Model Applications to Process Optimization Model Application to Refinery Production Planning Workshop 4.1: Guide for Modeling FCC Units in Aspen HYSYS/Petroleum Refining Workshop 4.2: Calibrating Basic FCC Model Workshop 4.3: Build Main Fractionator and Gas Plant System Workshop 4.4: Model Applications to Process Optimization -Perform Case Study to Identify Different Gasoline Production Scenarios Workshop 4.5: Model Application to Production Planning- Generate DELTA-BASE Vectors for Linear-Programming (LP)-Based Production Planning Conclusions Nomenclature References PREDICTIVE MODELING OF THE CONTINUOUS CATALYST REGENERATION (CCR) REFORMING PROCESS Introduction Process Overview Process Chemistry Literature Review Aspen HYSYS/Petroleum Refining Catalytic Reformer Model Thermophysical Properties Fractionation System Feed Characterization Model Implementation Overall Modeling Strategy Results Model Applications to Process Optimization Model Applications to Refinery Production Planning Workshop 5.1: Guide for Modeling CCR Units in Aspen HYSYS/Petroleum Refining Workshop 5.2: Model Calibration Workshop 5.3: Build a Downstream Fractionation Workshop 5.4: Case Study to Vary RON and Product Distribution Profile Conclusions Nomenclature References PREDICTIVE MODELING OF THE HYDROPROCESSING UNITS Introduction Aspen HYSYS/Refining HCR Modeling Tool Process Description Model Development Modeling Results of MP HCR Process Modeling Results of HP HCR Process Model Applications to Process Optimization Model Application - Delta-Base Vector Generation Conclusion Workshop 6.1 - Build Preliminary Reactor Model of HCR Process Workshop 6.2 - Calibrate Preliminary Reactor Model to Match Plant Data Workshop 6.3 - Model Applications to Process Optimization Workshop 6.4 - Connect Reactor Model to Fractionator Simulation Nomenclature References

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BB1063810X
  • ISBN
    • 9783527333578
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Weinheim
  • ページ数/冊数
    xxiv, 497 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
ページトップへ