Interval-censored time-to-event data : methods and applications
著者
書誌事項
Interval-censored time-to-event data : methods and applications
(Chapman & Hall/CRC biostatistics series)(A Chapman & Hall book)
CRC, c2013
- : hardback
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research.
Divided into three parts, the book begins with an overview of interval-censored data modeling, including nonparametric estimation, survival functions, regression analysis, multivariate data analysis, competing risks analysis, and other models for interval-censored data. The next part presents interval-censored methods for current status data, Bayesian semiparametric regression analysis of interval-censored data with monotone splines, Bayesian inferential models for interval-censored data, an estimator for identifying causal effect of treatment, and consistent variance estimation for interval-censored data. In the final part, the contributors use Monte Carlo simulation to assess biases in progression-free survival analysis as well as correct bias in interval-censored time-to-event applications. They also present adaptive decision making methods to optimize the rapid treatment of stroke, explore practical issues in using weighted logrank tests, and describe how to use two R packages.
A practical guide for biomedical researchers, clinicians, biostatisticians, and graduate students in biostatistics, this volume covers the latest developments in the analysis and modeling of interval-censored time-to-event data. It shows how up-to-date statistical methods are used in biopharmaceutical and public health applications.
目次
Introduction and Overview: Overview of Recent Developments for Interval-Censored Data. A Review of Various Models for Interval-Censored Data. Methodology: Current Status Data in the Twenty-First Century. Regression Analysis for Current Status Data. Statistical Analysis of Dependent Current Status Data. Bayesian Semiparametric Regression Analysis of Interval-Censored Data with Monotone Splines. Bayesian Inference of Interval-Censored Survival Data. Targeted Minimum Loss-Based Estimation of a Causal Effect Using Interval-Censored Time-to-Event Data. Consistent Variance Estimation in Interval-Censored Data. Applications and Related Software: Bias Assessment in Progression-Free Survival Analysis. Bias and Its Remedy in Interval-Censored Time-to-Event Applications. Adaptive Decision Making Based on Interval-Censored Data in a Clinical Trial to Optimize Rapid Treatment of Stroke. Practical Issues on Using Weighted Logrank Tests. glrt - New R Package for Analyzing Interval-Censored Survival Data. Index.
「Nielsen BookData」 より