The reflective Lorentzian lattices of rank 3
著者
書誌事項
The reflective Lorentzian lattices of rank 3
(Memoirs of the American Mathematical Society, no. 1033)
American Mathematical Society, 2012
大学図書館所蔵 件 / 全10件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"November 2012, volume 220, number 1033 (first of 4 numbers)."
Includes bibliographical references (p. 107-108)
内容説明・目次
内容説明
The author classifies all the symmetric integer bilinear forms of signature $(2,1)$ whose isometry groups are generated up to finite index by reflections. There are 8,595 of them up to scale, whose 374 distinct Weyl groups fall into 39 commensurability classes. This extends Nikulin's enumeration of the strongly square-free cases. The author's technique is an analysis of the shape of the Weyl chamber, followed by computer work using Vinberg's algorithm and a ``method of bijections''. He also corrects a minor error in Conway and Sloane's definition of their canonical $2$-adic symbol.
「Nielsen BookData」 より