Modeling dose-response microarray data in early drug development experiments using R
著者
書誌事項
Modeling dose-response microarray data in early drug development experiments using R
(Use R! / series editors, Robert Gentleman, Kurt Hornik, Giovanni Parmigiani)
Springer, c2012
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
This book focuses on the analysis of dose-response microarray data in pharmaceutical settings, the goal being to cover this important topic for early drug development experiments and to provide user-friendly R packages that can be used to analyze this data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students.
Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as inference under order restrictions and non-linear parametric models, which are used in the second part of the book.
Part II is the core of the book, in which we focus on the analysis of dose-response microarray data. Methodological topics discussed include:
* Multiplicity adjustment
* Test statistics and procedures for the analysis of dose-response microarray data
* Resampling-based inference and use of the SAM method for small-variance genes in the data
* Identification and classification of dose-response curve shapes
* Clustering of order-restricted (but not necessarily monotone) dose-response profiles
* Gene set analysis to facilitate the interpretation of microarray results
* Hierarchical Bayesian models and Bayesian variable selection
* Non-linear models for dose-response microarray data
* Multiple contrast tests
* Multiple confidence intervals for selected parameters adjusted for the false coverage-statement rate
All methodological issues in the book are illustrated using real-world examples of dose-response microarray datasets from early drug development experiments.
目次
Introduction.- Part I: Dose-response Modeling: An Introduction.- Estimation Under Order Restrictions.- The Likelihood Ratio Test.- Part II: Dose-response Microarray Experiments.- Functional Genomic Dose-response Experiments.- Adjustment for Multiplicity.- Test for Trend.- Order Restricted Bisclusters.- Classification of Trends in Dose-response Microarray Experiments Using Information Theory Selection Methods.- Multiple Contrast Test.- Confidence Intervals for the Selected Parameters.- Case Study Using GUI in R: Gene Expression Analysis After Acute Treatment With Antipsychotics.
「Nielsen BookData」 より