Complementarity modeling in energy markets
著者
書誌事項
Complementarity modeling in energy markets
(International series in operations research & management science, v. 180)
Springer, c2013
大学図書館所蔵 件 / 全5件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Other Authors: Antonio J. Conejo, J. David Fuller, Benjamin F. Hobbs, Carlos Ruiz
Includes bibliographical references and index
内容説明・目次
内容説明
This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren't specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.
目次
Introduction and Motivation.- Optimality and Complementarity.- Some Microeconomic Principles.- Equilibria and Complementarity Problems.- Variational Inequality Problems.- Optimization Problems Constrained by Optimization Problems.- Equilibrium Problems with Equilibrium Constraints.- Algorithm for LCPs, NCPs, and VIs.- Some Advanced Algorithms for VI Decomposition, MPCCs and EPECs.- Natural Gas Market Modeling.- Electricity and Environmental Markets.- Multicommodity Equilibrium Models: Accounting for Demand-Side Linkages.
「Nielsen BookData」 より