Observing and modeling earth's energy flows
Author(s)
Bibliographic Information
Observing and modeling earth's energy flows
(Space sciences series of ISSI, 41)
Springer, c2012
- : hardback
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Originally published in: Surveys in geophysics, Volume 33, Issues 3-4, 2012
Includes bibliographical references
Description and Table of Contents
Description
This book provides a comprehensive presentation of Earth's energy flows and their consequences for the climate. The Earth's climate as well as planetary climates in general, are broadly controlled by three fundamental parameters: the solar irradiance, the planetary albedo and the planetary emissivity. Space measurements indicate that these three quantities are remarkably stable. A minor decrease in planetary emissivity is consistent with theoretical calculations. This is due to the ongoing increase of atmospheric greenhouse gases making the atmosphere more opaque to long wave terrestrial radiation. As a consequence radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the incoming amount of heat from the sun. Present space-based systems cannot yet satisfactorily measure this imbalance, but the effect can be inferred from the measurements of the increase of heat in the oceans. Minor amounts of heat are also used to melt ice and to warm the atmosphere and the surface of the Earth.
The book brings to fore the complexity of feedback processes of the Earth's climate system and in particular the way clouds and aerosols affect the energy balance both directly and indirectly through feed-back loops driven by the dynamics of atmospheric, ocean and land surface processes. The book highlights recent scientific progress as well as remaining challenges.
Previously published in Surveys in Geophysics, Volume 33, Nos. 3-4, 2012
Table of Contents
Earth's Energy Flows.- Solar forcing.- The role of water vapour.- The role of clouds.- Aerosol Forcing.- Climate Feedback.- Future Challenges.
by "Nielsen BookData"