Supervised learning with complex-valued neural networks
著者
書誌事項
Supervised learning with complex-valued neural networks
(Studies in computational intelligence, 421)
Springer, c2013
大学図書館所蔵 件 / 全2件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references
内容説明・目次
内容説明
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.
目次
Introduction.- Fully Complex-valued Multi Layer Perceptron Networks.- Fully Complex-valued Radial Basis Function Networks.- Performance Study on Complex-valued Function Approximation Problems.- Circular Complex-valued Extreme Learning Machine Classifier.- Performance Study on Real-valued Classification Problems.- Complex-valued Self-regulatory Resource Allocation Network.- Conclusions and Scope for FutureWorks (CSRAN).
「Nielsen BookData」 より