Systems, pollution, modeling, and measurements
Author(s)
Bibliographic Information
Systems, pollution, modeling, and measurements
(Handbook of environmental fluid dynamics / edited by H.J.S. Fernando, 2)
CRC Press/Taylor & Francis, c2013
- : Hardback
Available at 11 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, the two-volume Handbook of Environmental Fluid Dynamics presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the study of environmental motions. It also offers critical discussions of environmental sustainability related to engineering.
The handbook features 81 chapters written by 135 renowned researchers from around the world. Covering environmental, policy, biological, and chemical aspects, it tackles important cross-disciplinary topics such as sustainability, ecology, pollution, micrometeorology, and limnology.
Volume Two: Systems, Pollution, Modeling, and Measurements explores the interactions between engineered structures and anthropogenic activities that affect natural flows, with particular emphasis on environmental pollution. The book covers the numerical methodologies that underpin research, predictive modeling, and cyber-infrastructure developments. It also addresses practical aspects of laboratory experiments and field observations that validate quantitative predictions and help identify new phenomena and processes.
As communities face existential challenges posed by climate change, rapid urbanization, and scarcity of water and energy, the study of environmental fluid dynamics becomes increasingly relevant. This volume is a valuable resource for students, researchers, and policymakers working to better understand environmental motions and how they affect and are influenced by anthropogenic activities.
See also Handbook of Environmental Fluid Dynamics, Two-Volume Set and Volume One: Overview and Fundamentals.
Table of Contents
Part I Engineered Systems and Anthropogenic Influence: Water Distribution Systems. Groundwater-Surface Water Discharges. Fluid Mechanics of Agricultural Systems. Desalination and the Environment. Bubble Plumes. Scour around Hydraulic Structures. Flow through Urban Canopies. Flow through Buildings. Bluff Body Aerodynamics and Aeroelasticity. Wake-Structure Interactions. Urban Heat Islands. Part II Environmental Pollution: Atmospheric Dispersion. Flow and Dispersion in Street Canyons. Air Flow through Tunnels. Sound Outdoors and Noise Pollution. Riverine Transport, Mixing, and Dispersion. Ocean Outfalls. Modeling Oil Spills to Mitigate Coastal Pollution. Miscible and Immiscible Pollutants in Subsurface Systems. Part III Numerical Modeling of Environmental Flows: Turbulent Flow Modeling. Direct and Large Eddy Simulation of Environmental Flows. Multiscale Nesting and High Performance Computing. Multiscale Representations. Dispersion Modeling. Modeling the Urban Boundary and Canopy Layers. Air Pollution Modeling and Its Applications. Mathematical Models to Improve Performance of Surface Irrigation Systems. Cyberinfrastructure and Community Environmental Modeling. Uncertainty in Environmental NWP Modeling. Part IV Laboratory Modeling of Environmental Flows: Physical Modeling of Hydraulics and Sediment Transport. Laboratory Modeling. General Laboratory Techniques. Hot-Wire Anemometry in Turbulence Research. Optical Methods and Unconventional Experimental Setups in Turbulence Research. Part V Environmental Measurements: Hydrophysical Measurements in Natural Waters. Flow Measurements in the Atmosphere. Atmospheric Flux Measurements. Clear-Air Radar Profiling of Wind and Turbulence in the Lower Atmosphere. Index.
by "Nielsen BookData"