Bibliographic Information

Nonlinear equations

Michael E. Taylor

(Applied mathematical sciences, v. 117 . Partial differential equations / Michael E. Taylor ; 3)

Springer Science+Business Media, c2010

2nd ed

  • : pbk

Available at  / 5 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BB11987046
  • ISBN
    • 9781461427414
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    New York
  • Pages/Volumes
    xxii, 715 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top