Ibn al-Haytham's theory of conics, geometrical constructions and practical geometry
著者
書誌事項
Ibn al-Haytham's theory of conics, geometrical constructions and practical geometry
(Culture and civilization in the Middle East, 36 . A history of Arabic sciences and mathematics ; v. 3)
Routledge, 2013
- : hbk
- タイトル別名
-
Les mathématiques infinitésimales du IXe au XIe siècle
Ibn al-Haytham : théorie des coniques, constructions géométriques et géométrie pratique
大学図書館所蔵 件 / 全5件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"This book is a translation of Les mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-Haytham. théorie des coniques, constructions géométriques et géométrie pratique" -- Foreword
"Centre for Arab Unity Studies"
Includes bibliographical references (p. [735]-744) and indexes
内容説明・目次
内容説明
Theory of Conics, Geometrical Constructions and Practical Geometry: A History of Arabic Sciences and Mathematics Volume 3, provides a unique primary source on the history and philosophy of mathematics and science from the mediaeval Arab world. The present text is complemented by two preceding volumes of A History of Arabic Sciences and Mathematics, which focused on founding figures and commentators in the ninth and tenth centuries, and the historical and epistemological development of 'infinitesimal mathematics' as it became clearly articulated in the oeuvre of Ibn al-Haytham.
This volume examines the increasing tendency, after the ninth century, to explain mathematical problems inherited from Greek times using the theory of conics. Roshdi Rashed argues that Ibn al-Haytham completes the transformation of this 'area of activity,' into a part of geometry concerned with geometrical constructions, dealing not only with the metrical properties of conic sections but with ways of drawing them and properties of their position and shape.
Including extensive commentary from one of world's foremost authorities on the subject, this book contributes a more informed and balanced understanding of the internal currents of the history of mathematics and the exact sciences in Islam, and of its adaptive interpretation and assimilation in the European context. This fundamental text will appeal to historians of ideas, epistemologists and mathematicians at the most advanced levels of research.
目次
Introduction: Conic sections and geometrical constructions Chapter 1: Theory of conics and geometrical constructions: 'completion of the conics' Chapter 2:Correcting the Bana Masa's Lemma for Apollonius' conics Chapter 3: Problems of geometrical construction Chapter 4: Practical Geometry: Measurement Appendix 1: A Research Tradition: the regular heptagon Appendix 2: Sinan ibn Al-Fati and Al-Qabisi:Optical Mensuration Supplementary notes Bibliography Indexes
「Nielsen BookData」 より