Introduction to time series using Stata
著者
書誌事項
Introduction to time series using Stata
Stata Press, c2013
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [433]-435)and indexes
内容説明・目次
内容説明
Introduction to Time Series Using Stata, Revised Edition provides a step-by-step guide to essential time-series techniques-from the incredibly simple to the quite complex- and, at the same time, demonstrates how these techniques can be applied in the Stata statistical package. The emphasis is on an understanding of the intuition underlying theoretical innovations and an ability to apply them. Real-world examples illustrate the application of each concept as it is introduced, and care is taken to highlight the pitfalls, as well as the power, of each new tool. The Revised Edition has been updated for Stata 16.
目次
Just enough Stata
Getting started
All about data
Looking at data
Statistics
Odds and ends
Making a date
Typing dates and date variables
Looking ahead
Just enough statistics
Random variables and their moments
Hypothesis tests
Linear regression
Multiple-equation models
Time series
Filtering time-series data
Preparing to analyze a time series
The four components of a time series
Some simple filters
Additional filters
Points to remember
A first pass at forecasting
Forecast fundamentals
Filters that forecast
Points to remember
Looking ahead
Autocorrelated disturbances
Autocorrelation
Regression models with autocorrelated disturbances
Testing for autocorrelation
Estimation with first-order autocorrelated data
Estimating the mortgage rate equation
Points to remember
Univariate time-series models
The general linear process
Lag polynomials: Notation or prestidigitations?
The ARMA model
Stationarity and invertibility
What can ARMA models do?
Points to remember
Looking ahead
Modeling a real-world time series
Getting ready to model a time series
The Box-Jenkins approach
Specifying an ARMA model
Estimation
Looking for trouble: Model diagnostic checking
Forecasting with ARIMA models
Comparing forecasts
Points to remember
What have we learned so far?
Looking ahead
Time-varying volatility
Examples of time-varying volatility
ARCH: A model of time-varying volatility
Extensions to the ARCH model
Points to remember
Model of multiple time series
Vector autoregressions
A VAR of the U.S. macroeconomy
Who's on first?
SVARs
Points to remember
Looking ahead
Models of nonstationary times series
Trend and unit roots
Testing for unit roots
Cointegration: Looking for a long-term relationship
Cointegrating relationships and VECM
From intuition to VECM: An example
Points to remember
Looking ahead
Closing observations
Making sense of it all
What did we miss?
Farewell
References
「Nielsen BookData」 より