Global regularity for the Yang-Mills equations on high dimensional Minkowski space

著者

書誌事項

Global regularity for the Yang-Mills equations on high dimensional Minkowski space

Joachim Krieger, Jacob Sterbenz

(Memoirs of the American Mathematical Society, no. 1047)

American Mathematical Society, c2012

大学図書館所蔵 件 / 10

この図書・雑誌をさがす

注記

"May 2013, volume 223, number 1047 (first of 5 numbers)."

Includes bibliographical references (p. 99)

内容説明・目次

内容説明

This monograph contains a study of the global Cauchy problem for the Yang-Mills equations on (6 1) and higher dimensional Minkowski space, when the initial data sets are small in the critical gauge covariant Sobolev space H (n 4)/2A. Regularity is obtained through a certain ""microlocal geometric renormalization"" of the equations which is implemented via a family of approximate null Croenstrom gauge transformations. The argument is then reduced to controlling some degenerate elliptic equations in high index and non-isotropic Lp spaces, and also proving some bilinear estimates in specially constructed square-function spaces.

目次

Table of Contents Introduction Some gauge-theoretic preliminaries Reduction to the ""main a-priori estimate"" Some analytic preliminaries Proof of the main a-priori estimate Reduction to approximate half-wave operators Construction of the half-wave operators Fixed time L2 estimates for the parametrix The dispersive estimate Decomposable function spaces and some applications Completion of the proof Bibliography

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB12507725
  • ISBN
    • 9780821844892
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 99 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ