Scattering theory of classical and quantum N-particle systems
Author(s)
Bibliographic Information
Scattering theory of classical and quantum N-particle systems
(Texts and monographs in physics)
Springer, [2011?]
Softcover reprint of the hardcover 1st edition 1977
- pbk.
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Originally published: 1997
Includes bibliographical references and index
Description and Table of Contents
Description
A system of N non-relativistic classical particles interacting with pair potentials is described by a Hamiltonian of the form (0.0.1) This Hamiltonian generates a flow (t) on the phase space JR3N x JR3N. An analogous system of N quantum particles is described by a Hamiltonian of the form N 1 H := -L -Llj + L \lij(Xi - Xj)' (0.0.2) j=l 2mj l$i
Table of Contents
0. Introduction.- 1. Classical Time-Decaying Forces.- 2. Classical 2-Body Hamiltonians.- 3. Quantum Time-Decaying Hamiltonians.- 4. Quantum 2-Body Hamiltonians.- 5. Classical N-Body Hamiltonians.- 6. Quantum N-Body Hamiltonians.- A. Miscellaneous Results in Real Analysis.- A.1 Some Inequalities.- A.2 The Fixed Point Theorem.- A.3 The Hamilton-Jacobi Equation.- A.4 Construction of Some Cutoff Functions.- A.5 Propagation Estimates.- A.6 Comparison of Two Dynamics.- A.7 Schwartz's Global Inversion Theorem.- B. Operators on Hilbert Spaces.- B.1 Self-adjoint Operators.- B.2 Convergence of Self-adjoint Operators.- B.3 Time-Dependent Hamiltonians.- B.4 Propagation Estimates.- B.5 Limits of Unitary Operators.- B.6 Schur's Lemma.- C. Estimates on Functions of Operators.- C.1 Basic Estimates of Commutators.- C.2 Almost-Analytic Extensions.- C.3 Commutator Expansions I.- C.4 Commutator Expansions II.- D. Pseudo-differential and Fourier Integral Operators.- D.0 Introduction.- D.1 Symbols of Operators.- D.2 Phase-Space Correlation Functions.- D.3 Symbols Associated with a Uniform Metric.- D.4 Pseudo-differential Operators Associated with a Uniform Metric.- D.5 Symbols and Operators Depending on a Parameter.- D.6 Weighted Spaces.- D.7 Symbols Associated with Some Non-uniform Metrics.- D.8 Pseudo-differential Operators Associated with the Metric 91.- D.9 Essential Support of Pseudo-differential Operators.- D.10 Ellipticity.- D.12 Non-stationary Phase Method.- D.13 FIO's Associated with a Uniform Metric.- D.14 FIO's Depending on a Parameter.- References.
by "Nielsen BookData"