Graph theory and sparse matrix computation
著者
書誌事項
Graph theory and sparse matrix computation
(The IMA volumes in mathematics and its applications, v. 56)
Springer-Verlag, [2013]
- : pbk
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Softcover reprint of the hardcover 1st edition 1993"--T.p verso
Includes bibliographical references
内容説明・目次
内容説明
This IMA Volume in Mathematics and its Appllcations GRAPH THEORY AND SPARSE MATRIX COMPUTATION is based on the proceedings of a workshop that was an integraI part of the 1991- 92 IMA program on "Applied Linear AIgebra." The purpose of the workshop was to bring together people who work in sparse matrix computation with those who conduct research in applied graph theory and grl:l,ph algorithms, in order to foster active cross-fertilization. We are grateful to Richard Brualdi, George Cybenko, Alan Geo~ge, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-Iong program. We espeeially thank Alan George, John R. Gilbert, and Joseph W.H. Liu for organizing this workshop and editing the proceedings. The finaneial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller. Jr. PREFACE When reality is modeled by computation, linear algebra is often the con nec- tiori between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer.
Efficiency demands that every possible advantage be exploited: sparse structure, advanced com- puter architectures, efficient algorithms. Therefore sparse matrix computation knits together threads from linear algebra, parallei computing, data struetures, geometry, and both numerieal and discrete algorithms.
目次
An introduction to chordal graphs and clique trees.- Cutting down on fill using nested dissection: Provably good elimination orderings.- Automatic Mesh Partitioning.- Structural representations of Schur complements in sparse matrices.- Irreducibility and primitivity of Perron complements: Application of the compressed directed graph.- Predicting structure in nonsymmetric sparse matrix factorizations.- Highly parallel sparse triangular solution.- The fan-both family of column-based distributed Cholesky factorization algorithms.- Scalability of sparse direct solvers.- Sparse matrix factorization on SIMD parallel computers.- The efficient parallel iterative solution of large sparse linear systems.
「Nielsen BookData」 より