Topics in theoretical and computational nanoscience : from controlling light at the nanoscale to calculating quantum effects with classical electrodynamics
著者
書誌事項
Topics in theoretical and computational nanoscience : from controlling light at the nanoscale to calculating quantum effects with classical electrodynamics
(Springer theses : recognizing outstanding Ph. D. research)
Springer, c2011
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Doctoral thesis accepted by Northwestern University, Evanston, IL, USA"
Includes bibliographical references and index
内容説明・目次
内容説明
Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.
This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically:
* At the single nanoparticle level, how well do experimental and classical electrodynamics agree?
* What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment?
* Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this?
* Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects?
* Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?
目次
INTRODUCTION.- BASIC ELECTROMAGNETIC THEORY.- THEORETICAL AND COMPUTATIONAL METHODS.- CORRELATED SINGLE-NANOPARTICLE CALCULATIONS AND MEASUREMENTS.- OPTIMAL SERS NANOSTRUCTURES.- NANOSTRUCTURED METAL FILMS.- OPTICAL CORRALS.- CONCLUSIONS AND OUTLOOK.- DRUDE PLUS TWO LORENTZ POLE (D2L) DIELECTRIC MODEL PARAMETERS.- DERIVATION OF THE FINITE-ELEMENT FUNCTIONAL.- DERIVATION OF THE HYDRODYNAMIC DRUDE MODEL.- DERIVATION OF NONLOCAL FINITE-DIFFERENCE EQUATIONS.-
「Nielsen BookData」 より