Atomic structure prediction of nanostructures, clusters and surfaces
著者
書誌事項
Atomic structure prediction of nanostructures, clusters and surfaces
Wiley-VCH, c2013
- : hbk
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
Also available electronically
内容説明・目次
内容説明
This work fills the gap for a comprehensive reference conveying the developments in global optimization of atomic structures using genetic algorithms. Over the last few decades, such algorithms based on mimicking the processes of natural evolution have made their way from computer science disciplines to solid states physics and chemistry, where they have demonstrated their versatility and predictive power for many materials. Following an introduction and historical perspective, the text moves on to provide an in-depth description of the algorithm before describing its applications to crystal structure prediction, atomic clusters, surface and interface reconstructions, and quasi one-dimensional nanostructures. The final chapters provide a brief account of other methods for atomic structure optimization and perspectives on the future of the field.
目次
Preface
1. The Challenge of Predicting Atomic Structure of Crystals or Nanostructures
1.1. Evolution: reality and algorithms
1.2. Genetic algorithms and some of their applications
1.3. Binary representation
1.4. Real-space representation
1.5. Organization of this book
References for Ch. 1
2. The Genetic Algorithm in Real-Space Representation
2.1. Structure determination problems
2.2. General procedure
2.3. Selection of parent structures
2.4. Crossover operations
2.5. Mutations
2.6. Updating the genetic pool: Survival of the fittest
2.7. Stopping criteria and subsequent analysis
References for Ch. 2
3. Crystal Structure Prediction
3.1. Complexity of the energy landscape
3.2. Interaction models
3.2.1. Classical potentials
3.2.2. DFT methods
3.2.3. Adaptive classical potentials
3.3. Constraints for improving the efficiency of GA
3.4. Assessing the diversity of the pool
3.4.1. Fingerprint function
3.4.2. Maintaining the diversity of the pool
3.5. GA for variable-composition
3.6. Mapping out phase diagrams
3.7. Examples
References for Ch. 3
4. Optimization of Atomic Clusters
4.1. Lennard-Jones clusters
4.2. Thompson problem for charged systems
4.3. Metal clusters
References for Ch. 4
5. Atomic Structure of Surfaces, Interfaces, and Nanowires
5.1. Reconstruction of surfaces as problem of global optimization
5.2. Interface structure: tilted grain boundaries in Silicon
5.3. Nanowires and nanotubes via GA optimization
References for Ch. 5
6. Other Methodologies for Atomic Structure Studies
6.1. Parallel-tempering Monte Carlo with geometric cooling schedule
6.2. Basin-hoping Monte Carlo
6.3. Minima-hoping method
6.4. Metadynamics approach for predicting phase transformations
References for Ch. 6
7. Perspectives and Future Directions
References for Ch. 7
「Nielsen BookData」 より