Multilayer neural networks : a generalized net perspective

著者

    • Krawczak, Maciej

書誌事項

Multilayer neural networks : a generalized net perspective

Maciej Krawczak

(Studies in computational intelligence, 478)

Springer, c2013

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

注記

Includes bibliographical references

内容説明・目次

内容説明

The primary purpose of this book is to show that a multilayer neural network can be considered as a multistage system, and then that the learning of this class of neural networks can be treated as a special sort of the optimal control problem. In this way, the optimal control problem methodology, like dynamic programming, with modifications, can yield a new class of learning algorithms for multilayer neural networks. Another purpose of this book is to show that the generalized net theory can be successfully used as a new description of multilayer neural networks. Several generalized net descriptions of neural networks functioning processes are considered, namely: the simulation process of networks, a system of neural networks and the learning algorithms developed in this book. The generalized net approach to modelling of real systems may be used successfully for the description of a variety of technological and intellectual problems, it can be used not only for representing the parallel functioning of homogenous objects, but also for modelling non-homogenous systems, for example systems which consist of a different kind of subsystems. The use of the generalized nets methodology shows a new way to describe functioning of discrete dynamic systems.

目次

Introduction to Multilayer Neural Networks.- Basics of Generalized Nets.- Simulation Process of Neural Networks.- Learning from Examples.- Learning as a Control Process.- Parameterisation of Learning.- Adjoint Neural Networks.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB12776931
  • ISBN
    • 9783319002477
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Heidelberg
  • ページ数/冊数
    xii, 182 p.
  • 大きさ
    25 cm
  • 親書誌ID
ページトップへ