Predicting the future : completing models of observed complex systems
著者
書誌事項
Predicting the future : completing models of observed complex systems
(Understanding complex systems / founding editor, J.A. Scott Kelso)
Springer, c2013
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 227-232) and index
内容説明・目次
内容説明
Through the development of an exact path integral for use in transferring information from observations to a model of the observed system, the author provides a general framework for the discussion of model building and evaluation across disciplines. Through many illustrative examples drawn from models in neuroscience, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is explored.
目次
- Preface.- 1 An Overview
- The Challenge of Complex Systems.- 2 Examples as a Guide to the Issues.- 3 General Formulation of Statistical Data Assimilation.- 4 Evaluating the Path Integral.- 5 Twin Experiments.- 6 Analysis of Experimental Data.
「Nielsen BookData」 より