The Principle of the common cause
Author(s)
Bibliographic Information
The Principle of the common cause
Cambridge University Press, 2013
- : hardback
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [193]-200) and index
Description and Table of Contents
Description
The common cause principle says that every correlation is either due to a direct causal effect linking the correlated entities or is brought about by a third factor, a so-called common cause. The principle is of central importance in the philosophy of science, especially in causal explanation, causal modeling and in the foundations of quantum physics. Written for philosophers of science, physicists and statisticians, this book contributes to the debate over the validity of the common cause principle, by proving results that bring to the surface the nature of explanation by common causes. It provides a technical and mathematically rigorous examination of the notion of common cause, providing an analysis not only in terms of classical probability measure spaces, which is typical in the available literature, but in quantum probability theory as well. The authors provide numerous open problems to further the debate and encourage future research in this field.
Table of Contents
- Preface
- 1. Introduction and overview
- 2. The common cause principle
- 3. Common cause extendability of probability spaces
- 4. Causally closed probability theories
- 5. Common common causes
- 6. Common cause extendability of non-classical probability spaces
- 7. Reichenbachian common cause systems
- 8. Causal closedness of quantum field theory
- 9. Reichenbach's common cause principle and EPR correlations
- 10. Where do we stand?
- Appendix
- Index.
by "Nielsen BookData"