The influence of technology on social network analysis and mining
著者
書誌事項
The influence of technology on social network analysis and mining
(Lecture notes in social networks, 6)
Springer, c2013
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
other editors: Jon Rokne, Gerhard Wagner, Arno H. P. Reuser
内容説明・目次
内容説明
The study of social networks was originated in social and business communities. In recent years, social network research has advanced significantly; the development of sophisticated techniques for Social Network Analysis and Mining (SNAM) has been highly influenced by the online social Web sites, email logs, phone logs and instant messaging systems, which are widely analyzed using graph theory and machine learning techniques. People perceive the Web increasingly as a social medium that fosters interaction among people, sharing of experiences and knowledge, group activities, community formation and evolution. This has led to a rising prominence of SNAM in academia, politics, homeland security and business. This follows the pattern of known entities of our society that have evolved into networks in which actors are increasingly dependent on their structural embedding General areas of interest to the book include information science and mathematics, communication studies, business and organizational studies, sociology, psychology, anthropology, applied linguistics, biology and medicine.
目次
EgoClustering: Overlapping Community Detection via Merged Friendship-Groups.- Optimization Techniques for Multiple Centrality Computations.- Application of social network metrics to a trust-aware collaborative model for generating personalized user recommendations.- TweCoM: topic and context mining from Twitter.- Pixel-Oriented Network Visualization. Static Visualization of Change in Social Networks.- Building Expert Recommenders from Email-Based Personal Social Networks.- A local structure-based method for nodes clustering. Application to a large mobile phone social network.- Virus Propagation Modeling in Facebook.- Comparing and visualizing the social spreading of products on a large social network.- Engagingness and Responsiveness Behavior Models on the Enron Email Network and its Application to Email Reply Order Prediction.- Efficient Extraction of High-Betweenness Vertices from Heterogeneous Networks.- Cross-Domain Analysis of the Blogosphere for Trend Prediction.- Informative Value of Individual and Relational Data Compared Through Business-Oriented Community Detection.- Clustering Social Networks Using Distance-Preserving Subgraph.- Extraction of Spatio-Temporal Data for Social Networks.- Detecting Communities in Massive Networks Efficiently with Flexible Resolution.- Detecting Emergent Behavior in Social Network of Agents.- Factors enabling information propagation in a Social Network Site.- Learning from the Past: An Analysis of Person Name Corrections in the DBLP Collection and Social Network Properties of Affected Entities.- Towards Leader based Recommendations.- Enhancing Child Safety in MMOs.- An Adaptive Framework for Discovery and Mining of User Profiles from Social Web-Based Interest Communities.- DB2SNA: an All-in-one Tool for Extraction and Aggregation of underlying Social Networks from Relational Databases.- Extending Social Network Analysis with Discourse Analysis - Combining Relational with Interpretive Data.- How Latent Class Models Matter to Social Network Analysis and Mining: Exploring the Emergence of Community.- Integrating Online Social Network Analysis in Personalized Web Search.- Evolution of Online Forum Communities.- Movie Rating Prediction with Matrix Factorization Algorithm.
「Nielsen BookData」 より