Instrumental methods of analysis

著者

    • Sivasankar, B.

書誌事項

Instrumental methods of analysis

B. Sivasankar

(Oxford higher education)

Oxford University Press, 2012

大学図書館所蔵 件 / 2

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [549]) and index

内容説明・目次

内容説明

Instrumental Methods of Analysis is a textbook designed to introduce various analytical and chemical methods, their underlying principles and applications to the undergraduate engineering students of biotechnology and chemical engineering. This book would also be of interest to students who pursue their B. Sc / M. Sc degree programs in biotechnology and chemistry. The book starts with a discussion on fundamentals of analytical chemistry, followed by data handling and statistical analysis. Wet chemical methods form the third chapter, where all the conventional titrimetric and gravimetric analysis is dealt with. It then moves onto discuss topics such as the microscopy, optical methods, various spectroscopic methods, X-ray methods, chromatographic methods, electrophoresis, and bulk separation methods. The last few chapters discuss electroanalytical methods, thermal, radioanalytical and finally the surface analytical methods. Illustrated with block diagrams throughout the text, the book provides review questions, and numerical examples in all relevant chapters.

目次

  • 1. Introduction to Analytical Chemistry 1
  • 1.1 SCOPE AND APPLICATIONS OF ANALYTICAL CHEMISTRY 1
  • 1.2 ANALYTICAL PROCESS 2
  • 1.3 SELECTION OF CHEMICAL REACTIONS FOR ANALYSIS 2
  • 1.4 EQUILIBRIUM METHODS 3
  • 1.5 CONCEPTS OF CHEMICAL EQUILIBRIUM 4
  • 1.6 TYPES OF EQUILIBRIA IN AQUEOUS MEDIA 6
  • 1.6.1 SELF-DISSOCIATION OF WATER 6
  • 1.6.2 ACID-BASE EQUILIBRIA 7
  • 1.6.3 THE PH SCALE 8
  • 1.6.4 HYDROLYSIS OF SALTS AND THE PH OF SALT SOLUTIONS 9
  • 1.6.5 BUFFER SOLUTIONS 10
  • 1.6.6 COMPLEXATION EQUILIBRIA 10
  • 1.6.7 SOLUBILITY EQUILIBRIA 11
  • 1.6.8 REDOX EQUILIBRIA 12
  • 1.7 KINETIC METHODS OF ANALYSIS 13
  • 1.7.1 EXPERIMENTAL METHODS FOR THE DETERMINATION OF RATE OF REACTION 15
  • 1.7.2 ANALYTICAL APPLICATIONS OF KINETIC METHODS 15
  • 1.8 ENZYME CATALYSED REACTIONS 16
  • 1.8.1 MECHANISTIC AND KINETIC ASPECTS OF ENZYME CATALYSED REACTIONS 16
  • 1.8.2 APPLICATIONS OF ENZYMATIC ANALYSIS 17
  • 1.8.3 SUBSTRATES AS ANALYTES 18
  • 1.8.4 ENZYMES AS ANALYTES 19
  • 1.9 STOICHIOMETRIC CALCULATIONS 20
  • 1.10 EXPRESSION OF CONCENTRATIONS OF SOLUTIONS 22
  • 1.11 REPORTING OF RESULTS 23
  • 2. Assessment of Analytical Data 24
  • 2.1 INTRODUCTION 24
  • 2.2 DEFINITIONS OF TERMS 24
  • 2.2.1 TRUE VALUE 24
  • 2.2.2 PRECISION 24
  • 2.2.3 ACCURACY 24
  • 2.2.4 ERROR 25
  • 2.2.5 MEAN AND MEDIAN 25
  • 2.2.6 SPREAD 25
  • 2.2.7 DEVIATION 25
  • 2.2.8 POPULATION STANDARD DEVIATION 25
  • 2.2.9 RELATIVE STANDARD DEVIATION AND COEFFICIENT OF VARIATION 26
  • 2.2.10 VARIANCE 26
  • 2.2.11 SIGNIFICANT FIGURES 26
  • 2.3 TYPES OF ERRORS 27
  • 2.3.1 GROSS ERRORS 27
  • 2.3.2 SYSTEMATIC ERRORS OR DETERMINATE ERRORS 27
  • 2.3.3 MINIMIZING SYSTEMATIC ERRORS 28
  • 2.3.4 RANDOM ERRORS OR INDETERMINATE ERRORS 29
  • 2.4 STATISTICAL TREATMENT OF RANDOM ERRORS 29
  • 2.4.1 DISTRIBUTION OF RANDOM ERRORS 29
  • 2.5 EVALUATION OF EXPERIMENTAL RESULTS 30
  • 2.5.1 RELIABILITY OF MEASUREMENTS 30
  • 2.5.2 ANALYSIS OF DATA 31
  • 2.6 COMPARISON OF RESULTS 32
  • 2.6.1 F-TEST 32
  • 2.6.2 STUDENT'S T-TEST 33
  • 2.6.3 PAIRED T-TEST 34
  • 2.7 STANDARDIZATION OF INSTRUMENTAL METHODS OF ANALYSIS 35
  • 2.7.1 LIMIT OF DETECTION AND LIMIT OF QUANTITATION 35
  • 2.7.2 CALIBRATION CHART OR CURVE 35
  • 2.7.3 METHOD OF STANDARD ADDITION 36
  • 2.7.4 METHOD OF LEAST SQUARES 37
  • 3. Wet Chemical Methods of Analysis 40
  • 3.1 INTRODUCTION 40
  • 3.2 VOLUMETRY 40
  • 3.3 CLASSIFICATION OF VOLUMETRIC METHODS 41
  • 3.4 STANDARD SOLUTIONS AND STANDARD SUBSTANCES 41
  • 3.5 NEUTRALIZATION TITRATIONS 42
  • 3.5.1 THEORY OF ACID-BASE INDICATORS 43
  • 3.5.2 TITRATION CURVES 45
  • 3.5.3 TITRATION OF A STRONG ACID WITH A STRONG BASE 45
  • 3.5.4 TITRATION OF A WEAK ACID WITH A STRONG BASE 47
  • 3.5.5 TITRATION OF A WEAK BASE WITH A STRONG ACID 49
  • 3.5.6 TITRATION OF A WEAK ACID WITH A WEAK BASE 49
  • 3.5.7 NEUTRALIZATION OF MIXTURES OF STRONG AND WEAK ACIDS OR STRONG AND WEAK BASES 50
  • 3.5.8 TITRATION OF POLYBASIC ACIDS WITH A STRONG BASE 50
  • 3.5.9 TITRATIONS IN NON-AQUEOUS MEDIA 51
  • 3.5.10 APPLICATIONS OF ACID-BASE TITRATIONS 53
  • 3.6 PRECIPITATION TITRATIONS 56
  • 3.6.1 ARGENTOMETRY 56
  • 3.6.2 DETECTION OF END POINTS 58
  • 3.7 COMPLEXATION TITRATIONS 60
  • 3.7.1 METAL-EDTA EQUILIBRIUM 62
  • 3.7.2 TITRATION CURVES 63
  • 3.7.3 METAL ION INDICATORS 66
  • 3.7.4 THEORY OF METAL IONS INDICATORS 67
  • 3.7.5 TYPES OF EDTA TITRATIONS 68
  • 3.7.6 APPLICATIONS OF EDTA TITRATIONS 69
  • 3.8 REDOX TITRATIONS 72
  • 3.8.1 REDOX INDICATORS 74
  • 3.8.2 PERMANGANOMETRY 75
  • 3.8.3 DICHROMETRY 76
  • 3.8.4 IODOMETRY 76
  • 3.8.5 APPLICATIONS OF REDOX TITRATIONS 77
  • 3.9 GRAVIMETRY 79
  • 3.10 VOLATILIZATION METHODS 80
  • 3.11 PRECIPITATION METHODS 80
  • 3.11.1 THEORETICAL PRINCIPLES OF PRECIPITATION METHODS 81
  • 3.11.2 CRITERIA FOR AN IDEAL GRAVIMETRIC ESTIMATION 81
  • 3.11.3 PRECIPITATING AGENTS 81
  • 3.11.4 FACTORS AFFECTING SOLUBILITY OF PRECIPITATES 82
  • 3.11.5 MECHANISM OF FORMATION OF PRECIPITATES 83
  • 3.11.6 COLLOIDAL PRECIPITATES 84
  • 3.11.7 CONTAMINATION OF PRECIPITATES 84
  • 3.11.8 PRACTICAL ASPECTS 85
  • 3.11.9 HOMOGENEOUS PRECIPITATION 88
  • 3.11.10 A FEW EXAMPLES OF GRAVIMETRIC ESTIMATIONS 88
  • 3.12 A FEW EXAMPLES OF ANALYSIS OF ALLOYS, ORES AND COMPLEX MATERIALS BY WETCHEMICAL METHODS 90
  • 3.12.1 ANALYSIS OF AN IRON ORE 90
  • 3.12.2 ANALYSIS OF BRASS 90
  • 3.12.3 ANALYSIS OF SOLDER 91
  • 3.12.4 ANALYSIS OF CEMENT 91
  • 4. Optical Methods 96
  • 4.1 INTRODUCTION 96
  • 4.2 REFRACTION 96
  • 4.3 REFRACTIVE INDEX 96
  • 4.3.1 MEASUREMENT OF REFRACTIVE INDEX 98
  • 4.3.2 ABBE REFRACTOMETER 98
  • 4.3.3 IMMERSION REFRACTOMETER 100
  • 4.3.4 APPLICATIONS OF REFRACTOMETRY 101
  • 4.4 POLARIMETRY 101
  • 4.4.1 POLARIZATION OF LIGHT 101
  • 4.4.2 POLARIZERS 103
  • 4.4.3 POLARIMETRY THEORY 104
  • 4.4.4 POLARIMETER 105
  • 4.4.5 APPLICATIONS OF POLARIMETRY 107
  • 4.5 OPTICAL ROTATORY DISPERSION AND CIRCULAR DICHROISM SPECTRA 108
  • 5. Microscopy 112
  • 5.1 INTRODUCTION 112
  • 5.2 OPTICAL MICROSCOPE 112
  • 5.2.1 COMPOUND LIGHT MICROSCOPE 112
  • 5.3 IMAGING TECHNIQUES 115
  • 5.3.1 BRIGHT-FIELD MICROSCOPY 115
  • 5.3.2 DARK-FIELD MICROSCOPY 116
  • 5.3.3 PHASE CONTRAST MICROSCOPY 118
  • 5.3.4 FLUORESCENCE MICROSCOPE 120
  • 5.3.5 CONFOCAL MICROSCOPY 120
  • 5.3.6 POLARIZING MICROSCOPE 122
  • 5.3.7 FLOW CYTOMETRY 122
  • 5.4 ELECTRON MICROSCOPE 123
  • 5.4.1 TRANSMISSION ELECTRON MICROSCOPE 124
  • 5.4.2 SCANNING ELECTRON MICROSCOPE 125
  • 5.4.3 SCANNING TRANSMISSION ELECTRON MICROSCOPE (STEM) 128
  • 5.5 SCANNING PROBE MICROSCOPY 128
  • 5.5.1 SCANNING TUNNELLING MICROSCOPE 128
  • 5.5.2 ATOMIC FORCE MICROSCOPE 129
  • 6. Spectroscopic Methods of Analysis 132
  • 6.1 INTRODUCTION 132
  • 6.2 ELECTROMAGNETIC RADIATION 132
  • 6.2.1 ELECTROMAGNETIC SPECTRUM 133
  • 6.3 ENERGY LEVELS IN ATOMS 134
  • 6.3.1 INTERACTION OF ELECTROMAGNETIC RADIATION WITH ATOMS 135
  • 6.4 ENERGY LEVELS IN MOLECULES 136
  • 6.4.1 INTERACTION OF ELECTROMAGNETIC RADIATION WITH MOLECULES 137
  • 6.5 CLASSIFICATION OF SPECTROSCOPIC TECHNIQUES 138
  • 6.6 ABSORPTION AND EMISSION SPECTRA 139
  • 6.6.1 WIDTH OF SPECTRAL LINES 139
  • 6.6.2 INTENSITY OF SPECTRAL LINES 140
  • 6.7 ANALYTICAL APPLICATIONS OF SPECTROSCOPY 142
  • 6.7.1 BEER-LAMBERT LAW 142
  • 6.7.2 APPLICATIONS OF BEER-LAMBERT LAW 143
  • 6.7.2 LIMITATIONS TO BEER-LAMBERT'S LAW 144
  • 6.8 VISUAL COLORIMETRY 145
  • 6.8.1 QUANTITATIVE ANALYSIS 147
  • 6.8.2 INSTRUMENTS FOR OPTICAL SPECTROMETRY AND MEASUREMENT OF ABSORBANCE 148
  • 6.9 SPECTROMETERS AND THEIR COMPONENTS 149
  • 6.9.1 RADIATION SOURCES 149
  • 6.9.2 DISPERSING DEVICES 150
  • 6.9.3 SAMPLE HOLDERS 158
  • 6.9.4 RADIATION DETECTORS 158
  • 6.9.5 SIGNAL PROCESSORS AND DISPLAY UNITS 163
  • 6.10 CONFIGURATIONS OF SPECTROMETERS 163
  • 6.11 FOURIER TRANSFORM SPECTROMETERS 164
  • 7. Atomic Spectroscopy 168
  • 7.1 INTRODUCTION 168
  • 7.2 CLASSIFICATION OF ATOMIC SPECTROMETRIC METHODS 168
  • 7.3 ATOMIZATION 168
  • 7.4 ATOMIZATION METHODS 169
  • 7.4.1 FLAME ATOMIZATION 169
  • 7.4.2 ELECTROTHERMAL ATOMIZATION 171
  • 7.4.3 GLOW DISCHARGE ATOMIZATION 172
  • 7.4.4 COLD-VAPOUR ATOMIZATION 172
  • 7.4.5 HYDRIDE ATOMIZATION 172
  • 7.5 ATOMIC ABSORPTION SPECTROMETRY 173
  • 7.5.1 PRINCIPLE 173
  • 7.5.2 ATOMIC ABSORPTION SPECTROMETER 174
  • 7.5.3 WORKING OF AAS 177
  • 7.5.4 INTERFERENCES IN ATOMIC ABSORPTION MEASUREMENTS 179
  • 7.6 ATOMIC EMISSION SPECTROSCOPY 180
  • 7.6.1 EXCITATION METHODS 180
  • 7.7 FLAME EMISSION SPECTROMETRY 181
  • 7.8 PLASMA EMISSION SPECTROMETRY 183
  • 7.8.1 INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROSCOPY (ICP-AES) 183
  • 7.8.2 INDUCTIVE COUPLED PLASMA-MASS SPECTROMETRY 185
  • 7.8.3 DIRECT CURRENT PLASMA ATOMIC EMISSION SPECTROSCOPY (DCP-AES) 185
  • 7.8.4 GENERAL FEATURES OF PLASMA SOURCE SPECTROMETERS 186
  • 7.9 ATOMIC FLUORESCENCE SPECTROSCOPY 186
  • 8. Molecular Spectroscopy 189
  • 8.1 INTRODUCTION 189
  • 8.2 UV-VISIBLE SPECTROSCOPY 189
  • 8.2.1 ELECTRONIC SPECTRA OF MOLECULES 189
  • 8.2.2 FRANCK-CONDON PRINCIPLE 190
  • 8.2.3 ELECTRONIC TRANSITIONS IN ORGANIC MOLECULES 193
  • 8.2.4 FACTORS AFFECTING ABSORPTION BANDS 194
  • 8.2.5 ELECTRONIC TRANSITIONS IN INORGANIC SPECIES 196
  • 8.2.6 UV-VISIBLE SPECTROPHOTOMETER 196
  • 8.2.7 ANALYTICAL APPLICATIONS OF UV-VISIBLE SPECTROSCOPY 198
  • 8.2.8 SIMULTANEOUS DETERMINATIONS 199
  • 8.2.9 PHOTOMETRIC TITRATIONS 200
  • 8.2.10 EXAMPLES OF SPECTROPHOTOMETRIC DETERMINATIONS 201
  • 8.3 INFRARED SPECTROPHOTOMETRY 204
  • 8.3.1 INFRARED REGION 204
  • 8.3.2 MOLECULAR VIBRATIONS 204
  • 8.3.4 VIBRATIONAL FREQUENCIES AND IR ABSORPTION BANDS 206
  • 8.3.5 INFRARED SPECTRUM 208
  • 8.3.6 IR SPECTROPHOTOMETER 211
  • 8.3.7 SAMPLE PREPARATION 213
  • 8.3.8 APPLICATIONS 213
  • 8.3.9 DIFFUSE REFLECTANCE INFRARED FOURIER TRANSFORM SPECTROMETRY 215
  • 8.3.10 ATTENUATED TOTAL REFLECTANCE SPECTROSCOPY 216
  • 8.3.11 NEAR INFRARED SPECTROSCOPY 216
  • 8.3.12 FAR INFRARED SPECTROSCOPY 217
  • 8.4 RAMAN SPECTROSCOPY 217
  • 8.4.1 COMPARISON OF RAMAN AND INFRARED SPECTRA 220
  • 8.4.2 RAMAN SPECTROMETER 220
  • 8.4.3 APPLICATIONS OF RAMAN SPECTROSCOPY 221
  • 8.4.4 RESONANCE RAMAN SPECTROSCOPY 222
  • 8.5 MICROWAVE SPECTROMETRY 223
  • 8.5.1 MICROWAVE SPECTROMETER 225
  • 8.6 MOLECULAR FLUORESCENCE AND PHOSPHORESCENCE 225
  • 8.6.1 MOLECULAR FLUORESCENCE SPECTROSCOPY 226
  • 8.6.2 FLUORESCENT MOLECULES 227
  • 8.6.3 FLUORESCENCE AND MOLECULAR STRUCTURE 227
  • 8.6.4 FACTORS AFFECTING FLUORESCENCE EMISSION 228
  • 8.6.5 ANALYTICAL ASPECTS OF FLUORESCENCE EMISSION 229
  • 8.6.6 FLUOROMETERS 229
  • 8.6.7 APPLICATIONS OF FLUORESCENCE MEASUREMENTS 230
  • 8.6.8 MOLECULAR PHOSPHORESCENCE SPECTROSCOPY 231
  • 8.7 CHEMILUMINESCENCE 231
  • 8.8 TURBIDIMETRY AND NEPHELOMETRY 232
  • 9. Magnetic Resonance Spectroscopy 236
  • 9.1 INTRODUCTION 236
  • 9.2 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 236
  • 9.2.1 THEORY OF NUCLEAR MAGNETIC RESONANCE 236
  • 9.2.2 NUCLEAR ENERGY LEVELS IN AN EXTERNAL MAGNETIC FIELD 237
  • 9.2.3 MAGNETIC RESONANCE 239
  • 9.2.4 CLASSICAL MODEL NMR ABSORPTION 239
  • 9.2.5 RELAXATION PROCESSES 241
  • 9.3 NMR SPECTROMETERS 241
  • 9.3.1 NMR SPECTRUM 242
  • 9.4 ENVIRONMENTAL EFFECTS 242
  • 9.4.1 CHEMICAL SHIFT 242
  • 9.4.2 DIAMAGNETIC ANISOTROPY AND CHEMICAL SHIFT 246
  • 9.4.3 SPIN-SPIN COUPLING 247
  • 9.4.4 INTERPRETATION OF FIRST ORDER SPECTRA 248
  • 9.4.5 SIMPLIFICATION OF COMPLEX SPECTRA 250
  • 9.5 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY OF NUCLEI OTHER THAN HYDROGEN 251
  • 9.6 CARBON-13 NMR SPECTROSCOPY 251
  • 9.7 APPLICATIONS OF NMR SPECTROSCOPY 253
  • 9.8 FOURIER TRANSFORM NMR SPECTROSCOPY 253
  • 9.9 MAGIC ANGLE SPINNING NMR SPECTROSCOPY 254
  • 9.10 ELECTRON SPIN RESONANCE SPECTROSCOPY 255
  • 9.10.1 ESR SPECTROMETER 255
  • 9.10.2 ESR SPECTRUM 256
  • 9.10.3 HYPERFINE AND FINE STRUCTURES IN ESR SPECTRA 257
  • 9.10.4 DOUBLE RESONANCE 259
  • 9.10.5 APPLICATIONS OF ESR SPECTROSCOPY 259
  • 10. Mass Spectrometry 262
  • 10.1 INTRODUCTION 262
  • 10.2 PRINCIPLE 262
  • 10.3 MASS SPECTROMETER 263
  • 10.3.1 SAMPLE INLET 264
  • 10.3.2 IONIZATION SOURCE AND ACCELERATION CHAMBER 265
  • 10.3.3 MASS ANALYSER 265
  • 10.3.4 DETECTOR 266
  • 10.3.5 RECORDING SYSTEM 266
  • 10.4 IONIZATION METHODS 266
  • 10.4.1 ELECTRON IMPACT IONIZATION (EI) 267
  • 10.4.2 SPARK IONIZATION 267
  • 10.4.3 CHEMICAL IONIZATION (CI) 267
  • 10.4.4 FIELD IONIZATION (FI) 269
  • 10.4.5 FIELD DESORPTION 269
  • 10.4.6 FAST ATOM/ION BOMBARDMENT (FAB) 269
  • 10.4.7 ELECTROSPRAY IONIZATION (ESI) 270
  • 10.4.8 MATRIX-ASSISTED LASER DESORPTION/IONIZATION (MALDI) 271
  • 10.5 OTHER TYPES OF MASS SPECTROMETERS 271
  • 10.5.1 QUADRUPOLE MASS ANALYSER OR SPECTROMETER 271
  • 10.5.2 TIME OF FLIGHT MASS SPECTROMETER 272
  • 10.5.3 ION TRAP ANALYSER (SPECTROMETER) 272
  • 10.5.4 FOURIER TRANSFORM MASS SPECTROMETER 273
  • 10.6 TANDEM MASS SPECTROMETRY 27
  • 10.7 INTERPRETATION OF MASS SPECTRUM 275
  • 10.8 APPLICATIONS 277
  • 10.8.1 MOLECULAR WEIGHT DETERMINATION 278
  • 10.8.2 DETERMINATION OF MOLECULAR FORMULA 280
  • 10.8.3 STRUCTURAL INFORMATION 284
  • 10.8.4 IDENTIFICATION OF THE SAMPLE COMPOUND 285
  • 10.8.5 APPLICATIONS IN THE STUDY OF PROTEINS AND NUCLEIC ACIDS 286
  • 11. X-ray Methods 288
  • 11.1 INTRODUCTION 288
  • 11.2 X-RAY SPECTROSCOPIC INSTRUMENTS 288
  • 11.2.1 PRODUCTION OF X-RAYS BY ELECTRON BOMBARDMENT 288
  • 11.2.2 X-RAYS FROM RADIOACTIVE SOURCES 292
  • 11.2.3 FILTERS 292
  • 11.2.4 MONOCHROMATOR, COLLIMATOR AND GONIOMETER ASSEMBLY 292
  • 11.2.5 DETECTORS 293
  • 11.3 CLASSIFICATION OF X-RAY METHODS 293
  • 11.4 X-RAY ABSORPTION SPECTROSCOPY 294
  • 11.4.1 ABSORPTION OF X-RAYS 294
  • 11.4.2 X-RAY ABSORPTION SPECTROMETER 295
  • 11.4.3 APPLICATIONS OF X-RAY ABSORPTION SPECTROMETRY 295
  • 11.5 X-RAY FLUORESCENCE SPECTROSCOPY 296
  • 11.5.1 FLUORESCENCE EMISSION OF X-RAYS 296
  • 11.5.2 X-RAY FLUORESCENCE SPECTROMETER 297
  • 11.5.3 APPLICATIONS OF X-RAY FLUORESCENCE SPECTROSCOPY 299
  • 11.6 X-RAY EMISSION AND ELECTRON PROBE MICROANALYSIS 299
  • 11.7 X-RAY DIFFRACTION METHODS 300
  • 12. Separation Methods 303
  • 12.1 AN OVERVIEW OF SEPARATION METHODS 303
  • 12.2 SOLVENT EXTRACTION 304
  • 12.2.1 PRINCIPLES OF LIQUID-LIQUID EXTRACTION 304
  • 12.2.2 SELECTIVITY OF EXTRACTION 305
  • 12.2.3 PARAMETERS AFFECTING THE EXTRACTION PROCESS 306
  • 12.2.4 EXTRACTION METHODS 306
  • 12.2.5 MODES OF EXTRACTION 311
  • 12.3 AQUEOUS TWO-PHASE EXTRACTION 314
  • 12.3.1 AQUEOUS TWO-PHASE SYSTEMS 314
  • 12.3.2 THEORETICAL PRINCIPLES OF AQUEOUS TWO-PHASE EXTRACTIONS 315
  • 12.3.3 AQUEOUS TWO-PHASE EXTRACTION PROCESS 316
  • 12.4 REVERSED MICELLAR EXTRACTION 316
  • 12.5 SUPERCRITICAL FLUID EXTRACTION 317
  • 12.6 SOLID PHASE EXTRACTION 318
  • 12.6.1 SOLID PHASE MICRO EXTRACTION 319
  • 12.7 ION EXCHANGE SEPARATION 319
  • 12.7.1 ION EXCHANGERS 319
  • 12.7.2 ION EXCHANGE EQUILIBRIUM 320
  • 12.7.3 CAPACITY OF ION EXCHANGERS 321
  • 12.7.4 REGENERATION OF ION EXCHANGERS 322
  • 12.8 FILTRATION 322
  • 12.9 MEMBRANE SEPARATION TECHNIQUES 323
  • 12.9.1 THEORY OF MEMBRANE SEPARATION 324
  • 12.9.2 RETENTION COEFFICIENT 324
  • 12.9.3 FACTORS AFFECTING MEMBRANE SEPARATION 325
  • 12.9.4 MEMBRANES AND THEIR CHARACTERISTICS 326
  • 12.9.5 EQUIPMENT FOR MEMBRANE SEPARATION 326
  • 12.9.6 MEMBRANE SEPARATION METHODS 327
  • 12.10 CRYSTALLIZATION 330
  • 12.11 PRECIPITATION 331
  • 12.12 LYOPHILIZATION 331
  • 13. Chromatographic Separations 335
  • 13.1 INTRODUCTION 335
  • 13.2 CLASSIFICATION OF CHROMATOGRAPHIC METHODS 335
  • 13.3 COLUMN CHROMATOGRAPHY 337
  • 13.3.1 PRINCIPLE OF SEPARATION IN COLUMN CHROMATOGRAPHY 337
  • 13.4 CHROMATOGRAPHIC PARAMETERS 339
  • 13.4.1 RETENTION TIME 339
  • 13.4.2 RETENTION VOLUME 340
  • 13.4.3 RELATIVE RETENTION 340
  • 13.4.4 COLUMN EFFICIENCY 341
  • 13.4.5 RESOLUTION 342
  • 13.4.6 PEAK ASYMMETRY 343
  • 13.4.7 BROADENING OF CHROMATOGRAPHIC PEAKS 343
  • 13.4.8 OPTIMIZATION OF COLUMN PERFORMANCE 345
  • 13.4.9 APPLICATIONS OF CHROMATOGRAPHY 346
  • 13.5 LIQUID CHROMATOGRAPHY 347
  • 13.5.1 PRACTICE OF LIQUID CHROMATOGRAPHY 347
  • 13.6 ADSORPTION CHROMATOGRAPHY 349
  • 13.7 PARTITION CHROMATOGRAPHY 350
  • 13.7.1 NORMAL PHASE CHROMATOGRAPHY 350
  • 13.7.2 REVERSED PHASE CHROMATOGRAPHY 350
  • 13.7.3 HYDROPHOBIC INTERACTION CHROMATOGRAPHY 351
  • 13.8 ION EXCHANGE CHROMATOGRAPHY 352
  • 13.8.1 ION CHROMATOGRAPHY (IC) 354
  • 13.9 SIZE EXCLUSION CHROMATOGRAPHY (SEC) 355
  • 13.10 AFFINITY CHROMATOGRAPHY 360
  • 13.11 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 361
  • 13.11.1 PRINCIPLE 362
  • 13.11.2 HPLC INSTRUMENT 362
  • 13.11.3 PRACTICE OF HPLC 366
  • 13.11.4 APPLICATIONS OF HPLC 367
  • 13.11.5 HPLC-MASS SPECTROMETRY (HPLC-MS) 368
  • 13.12 SUPERCRITICAL FLUID CHROMATOGRAPHY (SCFC) 369
  • 13.12.1 SUPERCRITICAL FLUID SOLVENTS AND THEIR PROPERTIES 369
  • 13.12.2 SCFC INSTRUMENT 370
  • 13.13 GAS CHROMATOGRAPHY 371
  • 13.13.1 PRINCIPLE 371
  • 13.13.2 GC INSTRUMENT 371
  • 13.13.3 HYPHENATED OR COUPLED CHROMATOGRAPHIC TECHNIQUES 376
  • 13.13.4 PRACTICE OF GC 378
  • 13.13.5 QUALITATIVE ANALYSIS BY GAS CHROMATOGRAPHY 380
  • 13.13.6 QUANTITATIVE ANALYSIS BY GAS CHROMATOGRAPHY 381
  • 13.14 PLANAR CHROMATOGRAPHIC TECHNIQUES 381
  • 13.14.1 PAPER CHROMATOGRAPHY (PC) 381
  • 13.14.2 THIN LAYER CHROMATOGRAPHY (TLC) 383
  • 13.14.3 TWO-DIMENSIONAL PLANAR CHROMATOGRAPHY 385
  • 13.14.4 HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY (HPTLC) 386
  • 13.14.5 APPLICATIONS OF PLANAR CHROMATOGRAPHIC TECHNIQUES 386
  • 13.14.6 DEVELOPMENTS IN PLANAR CHROMATOGRAPHIC TECHNIQUES 387
  • 14. Electrophoresis and Related Techniques of Separation 391
  • 14.1 INTRODUCTION 391
  • 14.2 ELECTROPHORESIS 391
  • 14.2.1 FREE SOLUTION ELECTROPHORESIS 392
  • 14.2.2 ZONE ELECTROPHORESIS 393
  • 14.2.3 POLYACRYLAMIDE GEL ELECTROPHORESIS (PAGE) 393
  • 14.2.4 NATIVE GEL ELECTROPHORESIS 394
  • 14.2.5 DISC GEL ELECTROPHORESIS 396
  • 14.2.6 SODIUM DODECYL SULPHATE-POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 397
  • 14.2.7 AGAROSE GEL ELECTROPHORESIS 398
  • 14.2.8 PARAMETERS AFFECTING GEL ELECTROPHORETIC SEPARATIONS 398
  • 14.2.9 DETECTION OF PROTEINS AND NUCLEIC ACIDS IN ELECTROPHORESIS GELS 398
  • 14.2.10 PULSED FIELD GEL ELECTROPHORESIS (PFGE) 399
  • 14.2.11 APPLICATIONS OF ELECTROPHORESIS TECHNIQUES 400
  • 14.3 IMMUNOELECTROPHORESIS 400
  • 14.4 CAPILLARY ELECTROPHORESIS 400
  • 14.4.1 MICELLAR ELECTROKINETIC CAPILLARY CHROMATOGRAPHY 402
  • 14.4.2 CAPILLARY GEL ELECTROPHORESIS 403
  • 14.4.3 CAPILLARY ELECTROCHROMATOGRAPHY 403
  • 14.5 ISOELECTRIC FOCUSING 404
  • 14.6 TWO-DIMENSIONAL ELECTROPHORESIS 406
  • 14.7 ISOTACHOPHORESIS 406
  • 15. Centrifugation 409
  • 15.1 INTRODUCTION 409
  • 15.2 CENTRIFUGAL FORCE 409
  • 15.3 PRINCIPLES OF CENTRIFUGAL SEDIMENTATION 411
  • 15.4 CENTRIFUGES 414
  • 15.4.1 ROTORS 415
  • 15.5 CENTRIFUGATION TECHNIQUES 418
  • 15.6 DIFFERENTIAL CENTRIFUGATION 418
  • 15.7 DENSITY GRADIENT CENTRIFUGATION 419
  • 15.7.1 SAMPLE APPLICATION AND HARVESTING SAMPLES FROM GRADIENTS 421
  • 15.7.2 DENSITY GRADIENT CENTRIFUGATION TECHNIQUES 422
  • 15.8 CENTRIFUGAL ELUTRIATION 423
  • 15.9 ULTRACENTRIFUGE 423
  • 15.9.1 ANALYTICAL ULTRACENTRIFUGE 423
  • 15.9.2 APPLICATIONS OF ANALYTICAL ULTRACENTRIFUGE 424
  • 15.9.3 DETERMINATION OF MOLECULAR WEIGHT OF MACROMOLECULES 424
  • 15.9.3 DETERMINATION OF PURITY OF MACROMOLECULES 426
  • 15.9.4 STUDY OF CONFORMATION CHANGES IN MACROMOLECULES 426
  • 15.10 PREPARATIVE ULTRACENTRIFUGE 426
  • 16. Electroanalytical Methods 428
  • 16.1 INTRODUCTION 428
  • 16.2 CLASSIFICATION OF ELECTROANALYTICAL TECHNIQUES 428
  • 16.3 CONDUCTOMETRY 429
  • 16.3.1 MEASUREMENT OF CONDUCTANCE 430
  • 16.3.2 APPLICATIONS OF CONDUCTANCE MEASUREMENTS 431
  • 16.4 CONDUCTANCE TITRATIONS 432
  • 16.4.1 ACID-BASE REACTIONS 433
  • 16.4.2 DISPLACEMENT TITRATIONS 434
  • 16.4.3 PRECIPITATION TITRATIONS 435
  • 16.4.4 COMPLEX-FORMATION REACTIONS 435
  • 16.4.5 TITRATIONS IN NON-AQUEOUS MEDIA 436
  • 16.5 OSCILLOMETRIC OR HIGH-FREQUENCY TITRATIONS 436
  • 16.6 PRINCIPLES OF ELECTROGRAVIMETRY AND COULOMETRY 437
  • 16.7 ELECTROGRAVIMETRY 437
  • 16.8 COULOMETRY 438
  • 16.8.1 CONSTANT POTENTIAL COULOMETRY 438
  • 16.8.2 CONSTANT CURRENT COULOMETRY 439
  • 16.9 POTENTIOMETRY 442
  • 16.9.1 THERMODYNAMIC SIGNIFICANCE OF ELECTRODE POTENTIALS 443
  • 16.9.2 INDICATOR ELECTRODES 444
  • 16.9.3 REFERENCE ELECTRODES 446
  • 16.9.4 EMF MEASUREMENT 447
  • 16.9.5 STANDARD WESTON CADMIUM CELL 448
  • 16.10 APPLICATIONS OF EMF MEASUREMENTS 449
  • 16.10.1 DETERMINATION OF PH BY GLASS ELECTRODE 449
  • 16.10.2 PH TITRATIONS 450
  • 16.10.3 POTENTIOMETRIC TITRATIONS 451
  • 16.11 ION SELECTIVE ELECTRODES 453
  • 16.11.1 DIFFERENT TYPES OF ION SELECTIVE ELECTRODES 453
  • 16.12 POLAROGRAPHY 454
  • 16.12.1 QUANTITATIVE ANALYSIS BY POLAROGRAPHY 458
  • 16.12.3 MODERN POLAROGRAPHIC TECHNIQUES 459
  • 16.13 AMPEROMETRIC TITRATIONS 461
  • 16.13.1 AMPEROMETRIC TITRATIONS WITH ONE POLARIZABLE INDICATOR ELECTRODE 462
  • 16.13.2 BIAMPEROMETRIC TITRATIONS 464
  • 16.13.3 A FEW IMPORTANT APPLICATIONS OF AMPEROMETRY 465
  • 16.13.4 OXYGEN SENSOR 466
  • 16.13.5 BIOSENSORS 466
  • 17. Thermal Analytical Methods 470
  • 17.1 INTRODUCTION 470
  • 17.2 THERMOGRAVIMETRY (TG) 470
  • 17.2.1 TG INSTRUMENT 471
  • 17.2.2 THERMOGRAM 472
  • 17.2.3 APPLICATIONS OF THERMOGRAVIMETRY 473
  • 17.3 DIFFERENTIAL THERMAL ANALYSIS (DTA) 476
  • 17.3.1 DTA INSTRUMENT 476
  • 17.3.2 DTA THERMOGRAM 477
  • 17.4 DIFFERENTIAL SCANNING CALORIMETRY (DSC) 478
  • 17.4.1 DSC INSTRUMENT 478
  • 17.4.2 APPLICATIONS OF DTA AND DSC 479
  • 17.5 THERMOMECHANICAL ANALYSIS (TMA) 483
  • 17.5.1 TMA INSTRUMENT 483
  • 17.5.2 APPLICATIONS OF TMA 484
  • 17.6 DYNAMIC MECHANICAL ANALYSIS (DMA) 485
  • 17.6.1 DMA INSTRUMENT 485
  • 17.6.2 DMA APPLICATIONS 486
  • 17.7 EVOLVED GAS ANALYSIS 487
  • 17.7.1 PYROLYSIS GAS CHROMATOGRAPH INSTRUMENT 487
  • 18. Radiochemical Methods of Analysis 490
  • 18.1 INTRODUCTION 490
  • 18.2 ORIGIN OF RADIOACTIVITY 490
  • 18.2.1 DECAY MODES OF RADIOACTIVE ISOTOPES 491
  • 18.2.2 KINETICS OF RADIOACTIVE DECAY PROCESS 492
  • 18.2.3 UNITS OF RADIOACTIVITY 493
  • 18.3 MEASUREMENT OF RADIOACTIVITY 493
  • 18.3.1 DETECTORS BASED ON IONIZATION 494
  • 18.3.2 DETECTORS BASED ON PHOTO EFFECT 497
  • 18.4 DETECTOR BASED ON CHEMICAL REACTION 498
  • 18.5 AMPLIFIERS AND OTHER ELECTRONIC EQUIPMENT 498
  • 18.6 PULSE HEIGHT ANALYSER 498
  • 18.7 ANALYTICAL APPLICATIONS OF RADIOISOTOPES 499
  • 18.7.1 ISOTOPE DILUTION METHOD 499
  • 18.7.2 ACTIVATION ANALYSIS 500
  • 18.7.3 RADIOIMMUNO ASSAY 502
  • 18.7.4 AUTORADIOGRAPHY 504
  • 19. Surface Analytical Methods 506
  • 19.1 INTRODUCTION 506
  • 19.2 CLASSIFICATION OF SURFACE ANALYTICAL METHODS 506
  • 19.3 METHODS BASED ON ADSORPTION-DESORPTION OF PROBE MOLECULES 507
  • 19.3.1 PHYSISORPTION 507
  • 19.3.2 CHEMISORPTION 510
  • 19.4 VIBRATIONAL SPECTROSCOPIC TECHNIQUES FOR SURFACE STUDIES 510
  • 19.4.1 IR SPECTROSCOPY 511
  • 19.4.3 ELECTRON ENERGY LOSS SPECTROSCOPY 512
  • 19.4.4 REFLECTION-ABSORPTION INFRARED SPECTROSCOPY 513
  • 19.5 ELECTRONIC SPECTROSCOPIC METHODS 513
  • 19.5.1 ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS 514
  • 19.5.2 AUGER ELECTRON SPECTROSCOPY 519
  • 19.5.3 ION SCATTERING SPECTROMETRY 521
  • 19.5.4 SECONDARY ION MASS SPECTROMETRY 522
  • 19.6 X-RAY METHODS 524
  • 19.7 THERMAL METHODS 524
  • 19.7.1 TEMPERATURE PROGRAMMED DESORPTION 524
  • 19.7.2 TEMPERATURE PROGRAMMED REDUCTION 528
  • 19.7.3 DESORPTION STUDIES BY TG, DTA AND DSC 529

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB1384498X
  • ISBN
    • 9780198073918
  • LCCN
    2012554513
  • 出版国コード
    ii
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New Delhi
  • ページ数/冊数
    xx, 555 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ