Advanced engineering mathematics
著者
書誌事項
Advanced engineering mathematics
CRC Press, Taylor & Francis Group, c2014
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Beginning with linear algebra and later expanding into calculus of variations, Advanced Engineering Mathematics provides accessible and comprehensive mathematical preparation for advanced undergraduate and beginning graduate students taking engineering courses. This book offers a review of standard mathematics coursework while effectively integrating science and engineering throughout the text. It explores the use of engineering applications, carefully explains links to engineering practice, and introduces the mathematical tools required for understanding and utilizing software packages.
Provides comprehensive coverage of mathematics used by engineering students
Combines stimulating examples with formal exposition and provides context for the mathematics presented
Contains a wide variety of applications and homework problems
Includes over 300 figures, more than 40 tables, and over 1500 equations
Introduces useful Mathematica (TM) and MATLAB (R) procedures
Presents faculty and student ancillaries, including an online student solutions manual, full solutions manual for instructors, and full-color figure sides for classroom presentations
Advanced Engineering Mathematics
covers ordinary and partial differential equations, matrix/linear algebra, Fourier series and transforms, and numerical methods. Examples include the singular value decomposition for matrices, least squares solutions, difference equations, the z-transform, Rayleigh methods for matrices and boundary value problems, the Galerkin method, numerical stability, splines, numerical linear algebra, curvilinear coordinates, calculus of variations, Liapunov functions, controllability, and conformal mapping.This text also serves as a good reference book for students seeking additional information. It incorporates Short Takes sections, describing more advanced topics to readers, and Learn More about It sections with direct references for readers wanting more in-depth information.
目次
Linear Algebraic Equations, Matrices, and Eigenvalues. Matrix Theory. Scalar ODEs I: Homogeneous Problems. Scalar ODEs II: Nonhomogeneous Problems. Linear Systems of ODEs. Geometry, Calculus, and Other Tools. Integral Theorems, Multiple Integrals, and Applications. Numerical Methods I. Fourier Series. Partial Differential Equations Models. Separation of Variables for PDEs. Numerical Methods II. Optimization. Calculus of Variations. Functions of a Complex Variable. Conformal Mappings and the Laplace Equation. Integral Transform Methods. Nonlinear Ordinary Differential Equations. Key Terms. Reference. Appendices. Index.
「Nielsen BookData」 より