Smart grid : technology and applications

Author(s)
    • Ekanayake, J. B. (Janaka B.)
    • Liyanage, Kithsiri
    • Wu, Jianzhong
    • Yokoyama, Akihiko
    • Jenkins, Nick
Bibliographic Information

Smart grid : technology and applications

Janaka Ekanayake ... [et al.]

Wiley, 2012

  • hbk.

Search this Book/Journal
Note

Formerly CIP Uk

Includes bibliographical references and index

Description and Table of Contents

Description

Electric power systems worldwide face radical transformation with the need to decarbonise electricity supply, replace ageing assets and harness new information and communication technologies (ICT). The Smart Grid uses advanced ICT to control next generation power systems reliably and efficiently. This authoritative guide demonstrates the importance of the Smart Grid and shows how ICT will extend beyond transmission voltages to distribution networks and customer-level operation through Smart Meters and Smart Homes. Smart Grid Technology and Applications: Clearly unravels the evolving Smart Grid concept with extensive illustrations and practical examples. Describes the spectrum of key enabling technologies required for the realisation of the Smart Grid with worked examples to illustrate the applications. Enables readers to engage with the immediate development of the power system and take part in the debate over the future Smart Grid. Introduces the constituent topics from first principles, assuming only a basic knowledge of mathematics, circuits and power systems. Brings together the expertise of a highly experienced and international author team from the UK, Sri Lanka, China and Japan. Electrical, electronics and computer engineering researchers, practitioners and consultants working in inter-disciplinary Smart Grid RD&D will significantly enhance their knowledge through this reference. The tutorial style will greatly benefit final year undergraduate and master's students as the curriculum increasing focuses on the breadth of technologies that contribute to Smart Grid realisation.

Table of Contents

About the authors xi Preface xiii Acknowledgements xv List of abbreviations xvii 1 The Smart Grid 1 1.1 Introduction 1 1.2 Why implement the Smart Grid now? 2 1.2.1 Ageing assets and lack of circuit capacity 2 1.2.2 Thermal constraints 2 1.2.3 Operational constraints 3 1.2.4 Security of supply 3 1.2.5 National initiatives 4 1.3 What is the Smart Grid? 6 1.4 Early Smart Grid initiatives 7 1.4.1 Active distribution networks 7 1.4.2 Virtual power plant 9 1.4.3 Other initiatives and demonstrations 9 1.5 Overview of the technologies required for the Smart Grid 12 References 14 Part I Information and Communication Technologies 2 Data communication 19 2.1 Introduction 19 2.2 Dedicated and shared communication channels 19 2.3 Switching techniques 23 2.3.1 Circuit switching 24 2.3.2 Message switching 24 2.3.3 Packet switching 24 2.4 Communication channels 25 2.4.1 Wired communication 27 2.4.2 Optical fibre 29 2.4.3 Radio communication 33 2.4.4 Cellular mobile communication 34 2.4.5 Satellite communication 34 2.5 Layered architecture and protocols 35 2.5.1 The ISO/OSI model 36 2.5.2 TCP/IP 40 References 43 3 Communication technologies for the Smart Grid 45 3.1 Introduction 45 3.2 Communication technologies 46 3.2.1 IEEE 802 series 46 3.2.2 Mobile communications 59 3.2.3 Multi protocol label switching 60 3.2.4 Power line communication 62 3.3 Standards for information exchange 62 3.3.1 Standards for smart metering 62 3.3.2 Modbus 63 3.3.3 DNP 3 64 3.3.4 IEC 61850 65 References 66 4 Information security for the Smart Grid 69 4.1 Introduction 69 4.2 Encryption and decryption 70 4.2.1 Symmetric key encryption 71 4.2.2 Public key encryption 75 4.3 Authentication 76 4.3.1 Authentication based on shared secret key 76 4.3.2 Authentication based on key distribution centre 77 4.4 Digital signatures 77 4.4.1 Secret key signature 77 4.4.2 Public key signature 77 4.4.3 Message digest 78 4.5 Cyber security standards 79 4.5.1 IEEE 1686: IEEE standard for substation intelligent electronic devices (IEDs) cyber security capabilities 79 4.5.2 IEC 62351: Power systems management and associated information exchange - data and communications security 80 References 80 Part II Sensing, Measurement, Control and Automation Technologies 5 Smart metering and demand-side integration 83 5.1 Introduction 83 5.2 Smart metering 84 5.2.1 Evolution of electricity metering 84 5.2.2 Key components of smart metering 86 5.3 Smart meters: An overview of the hardware used 86 5.3.1 Signal acquisition 87 5.3.2 Signal conditioning 89 5.3.3 Analogue to digital conversion 90 5.3.4 Computation 94 5.3.5 Input/output 95 5.3.6 Communication 96 5.4 Communications infrastructure and protocols for smart metering 96 5.4.1 Home-area network 96 5.4.2 Neighbourhood area network 97 5.4.3 Data concentrator 98 5.4.4 Meter data management system 98 5.4.5 Protocols for communications 98 5.5 Demand-side integration 99 5.5.1 Services provided by DSI 100 5.5.2 Implementations of DSI 104 5.5.3 Hardware support to DSI implementations 107 5.5.4 Flexibility delivered by prosumers from the demand side 109 5.5.5 System support from DSI 110 References 111 6 Distribution automation equipment 113 6.1 Introduction 113 6.2 Substation automation equipment 114 6.2.1 Current transformers 116 6.2.2 Voltage transformers 121 6.2.3 Intelligent electronic devices 121 6.2.4 Bay controller 124 6.2.5 Remote terminal units 124 6.3 Faults in the distribution system 125 6.3.1 Components for fault isolation and restoration 127 6.3.2 Fault location, isolation and restoration 132 6.4 Voltage regulation 135 References 139 7 Distribution management systems 141 7.1 Introduction 141 7.2 Data sources and associated external systems 142 7.2.1 SCADA 143 7.2.2 Customer information system 144 7.3 Modelling and analysis tools 144 7.3.1 Distribution system modelling 144 7.3.2 Topology analysis 149 7.3.3 Load forecasting 151 7.3.4 Power flow analysis 152 7.3.5 Fault calculations 156 7.3.6 State estimation 160 7.3.7 Other analysis tools 165 7.4 Applications 165 7.4.1 System monitoring 165 7.4.2 System operation 166 7.4.3 System management 168 7.4.4 Outage management system (OMS) 168 References 171 8 Transmission system operation 173 8.1 Introduction 173 8.2 Data sources 173 8.2.1 IEDs and SCADA 173 8.2.2 Phasor measurement units 174 8.3 Energy management systems 177 8.4 Wide area applications 179 8.4.1 On-line transient stability controller 181 8.4.2 Pole-slipping preventive controller 181 8.5 Visualisation techniques 183 8.5.1 Visual 2-D presentation 184 8.5.2 Visual 3-D presentation 185 References 186 Part III Power Electronics and Energy Storage 9 Power electronic converters 189 9.1 Introduction 189 9.2 Current source converters 191 9.3 Voltage source converters 195 9.3.1 VSCs for low and medium power applications 196 9.3.2 VSC for medium and high power applications 199 References 203 10 Power electronics in the Smart Grid 205 10.1 Introduction 205 10.2 Renewable energy generation 206 10.2.1 Photovoltaic systems 206 10.2.2 Wind, hydro and tidal energy systems 209 10.3 Fault current limiting 213 10.4 Shunt compensation 217 10.4.1 D-STATCOM 218 10.4.2 Active filtering 224 10.4.3 Shunt compensator with energy storage 224 10.5 Series compensation 228 References 231 11 Power electronics for bulk power flows 233 11.1 Introduction 233 11.2 FACTS 234 11.2.1 Reactive power compensation 235 11.2.2 Series compensation 241 11.2.3 Thyristor-controlled phase shifting transformer 243 11.2.4 Unified power flow controller 245 11.2.5 Interline power flow controller 246 11.3 HVDC 248 11.3.1 Current source converters 249 11.3.2 Voltage source converters 253 11.3.3 Multi-terminal HVDC 256 References 257 12 Energy storage 259 12.1 Introduction 259 12.2 Energy storage technologies 263 12.2.1 Batteries 263 12.2.2 Flow battery 264 12.2.3 Fuel cell and hydrogen electrolyser 266 12.2.4 Flywheels 267 12.2.5 Superconducting magnetic energy storage systems 270 12.2.6 Supercapacitors 270 12.3 Case study 1: Energy storage for wind power 271 12.4 Case study 2: Agent-based control of electrical vehicle battery charging 273 References 277 Index 279

by "Nielsen BookData"

Details
  • NCID
    BB14187498
  • ISBN
    • 9780470974094
  • LCCN
    2011044006
  • Country Code
    uk
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Oxford
  • Pages/Volumes
    xxi, 283 p., [6] p. of plates
  • Size
    25 cm
  • Classification
  • Subject Headings
Page Top