Concentration analysis and applications to PDE : ICTS workshop, Bangalore, January 2012
著者
書誌事項
Concentration analysis and applications to PDE : ICTS workshop, Bangalore, January 2012
(Trends in mathematics)
Birkhäuser , Springer, c2013
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"The ICTS mini-program School and workshop on cocompact imbeddings, profile decompositions, and their applications to PDE took place January 3-12, 2012" -- Introd.
"This collection of papers consists mostly of survey articles by conference speakers" -- Introd.
Includes bibliographical references
内容説明・目次
内容説明
Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE. This book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.
目次
Introduction.- On the Elements Involved in the Lack of Compactness in Critical Sobolev Embedding.- A Class of Second-order Dilation Invariant Inequalities.- Blow-up Solutions for Linear Perturbations of the Yamabe Equation.- Extremals for Sobolev and Exponential Inequalities in Hyperbolic Space.- The Lyapunov-Schmidt Reduction for Some Critical Problems.- A General Theorem for the Construction of Blowing-up Solutions to Some Elliptic Nonlinear Equations via Lyapunov-Schmidt's Finite-dimensional Reduction.- Concentration Analysis and Cocompactness.- A Note on Non-radial Sign-changing Solutions for the Schroedinger-Poisson Problem in the Semiclassical Limit.
「Nielsen BookData」 より