Concentration analysis and applications to PDE : ICTS workshop, Bangalore, January 2012

著者
    • Adimurthi, K. Sandeep
    • Schindler, Ian
    • Tintarev, Cyril
書誌事項

Concentration analysis and applications to PDE : ICTS workshop, Bangalore, January 2012

Adimurthi K. Sandeep, Ian Schindler, Cyril Tintarev, editors

(Trends in mathematics)

Birkhäuser , Springer, c2013

この図書・雑誌をさがす
注記

"The ICTS mini-program School and workshop on cocompact imbeddings, profile decompositions, and their applications to PDE took place January 3-12, 2012" -- Introd.

"This collection of papers consists mostly of survey articles by conference speakers" -- Introd.

Includes bibliographical references

内容説明・目次

内容説明

Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE. This book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.

目次

Introduction.- On the Elements Involved in the Lack of Compactness in Critical Sobolev Embedding.- A Class of Second-order Dilation Invariant Inequalities.- Blow-up Solutions for Linear Perturbations of the Yamabe Equation.- Extremals for Sobolev and Exponential Inequalities in Hyperbolic Space.- The Lyapunov-Schmidt Reduction for Some Critical Problems.- A General Theorem for the Construction of Blowing-up Solutions to Some Elliptic Nonlinear Equations via Lyapunov-Schmidt's Finite-dimensional Reduction.- Concentration Analysis and Cocompactness.- A Note on Non-radial Sign-changing Solutions for the Schroedinger-Poisson Problem in the Semiclassical Limit.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
ページトップへ