Analysis with an introduction to proof
Author(s)
Bibliographic Information
Analysis with an introduction to proof
(Always learning)
Pearson Education, c2014
5th ed., International ed
- : pbk
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes index
Description and Table of Contents
Description
For courses in undergraduate Analysis and Transition to Advanced Mathematics.
Analysis with an Introduction to Proof, Fifth Edition helps fill in the groundwork students need to succeed in real analysis-often considered the most difficult course in the undergraduate curriculum. By introducing logic and emphasizing the structure and nature of the arguments used, this text helps students move carefully from computationally oriented courses to abstract mathematics with its emphasis on proofs. Clear expositions and examples, helpful practice problems, numerous drawings, and selected hints/answers make this text readable, student-oriented, and teacher- friendly.
Table of Contents
1. Logic and Proof
Section 1. Logical Connectives
Section 2. Quantifiers
Section 3. Techniques of Proof: I
Section 4. Techniques of Proof: II
2. Sets and Functions
Section 5. Basic Set Operations
Section 6. Relations
Section 7. Functions
Section 8. Cardinality
Section 9. Axioms for Set Theory(Optional)
3. The Real Numbers
Section 10. Natural Numbers and Induction
Section 11. Ordered Fields
Section 12. The Completeness Axiom
Section 13. Topology of the Reals
Section 14. Compact Sets
Section 15. Metric Spaces (Optional)
4. Sequences
Section 16. Convergence
Section 17. Limit Theorems
Section 18. Monotone Sequences and Cauchy Sequences
Section 19. Subsequences
5. Limits and Continuity
Section 20. Limits of Functions
Section 21. Continuous Functions
Section 22. Properties of Continuous Functions
Section 23. Uniform Continuity
Section 24. Continuity in Metric Space (Optional)
6. Differentiation
Section 25. The Derivative
Section 26. The Mean Value Theorem
Section 27. L'Hospital's Rule
Section 28. Taylor's Theorem
7. Integration
Section 29. The Riemann Integral
Section 30. Properties of the Riemann Integral
Section 31. The Fundamental Theorem of Calculus
8. Infinite Series
Section 32. Convergence of Infinite Series
Section 33. Convergence Tests
Section 34. Power Series
9. Sequences and Series of Functions
Section 35. Pointwise and uniform Convergence
Section 36. Application of Uniform Convergence
Section 37. Uniform Convergence of Power Series
Glossary of Key Terms
References
Hints for Selected Exercises
Index
by "Nielsen BookData"